АДСОРБЦІЙНІ ТА ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ ПРИРОДНИХ ТА МОДИФІКОВАНИХ ФОРМ МОНТМОРИЛОНІТУ

T. L. Rakitskaya, G. M. Dzhyga, T. O. Kiose

Анотація


Узагальнені літературні та власні результати щодо впливу різних чинників на фізико-хімічні властивості та структурні параметри монтморилоніту різного походження. Систематично досліджено адсорбційно-десорбційні властивості відносно парів води зразків природного бентоніту з трьох родовищ України, а також модифікованих різними способами.

Ключові слова


природний та модифікований бентоніт; структурно-адсорбційні властивості; питома поверхня; активність адсорбованої води

Повний текст:

PDF

Посилання


Tarasevich Yu .I., Ovcharenko F. D. Stroenie i himiya poverhnosti sloistyih silikatov [Structure and Chemistry of the Layer Silicate Surface]. – K.: Nauk.dumka, 1988, 248 p. (in Russian)

Christidis G. E., Scott P. W., Dunham A. C. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl. Clay Sci., 1997, vol. 12, no 4, pp. 329-347. http://dx.doi.org/10.1016/S0169-1317(97)00017-3

Kumar P., Jasra, R. V., Bhat, T.S. Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation. Ind. Eng. Chem. Res., 1995, vol. 34, no 4, pp. 1140-1148. https://doi.org/10.1021/ie00043a053

Okada K., Arimitsu N., Kameshima Y., Nakajima A., MacKenzie, K. J. Solid acidity of 2:1 type clay minerals activated by selective leaching. Appl. Clay Sci., 2006, vol. 31, no 3, pp. 185–193. http://dx.doi.org/10.1016/j.clay.2005.10.014

Rodrigues M. G. F., Pereira K. R. O., Valenzuela-Diaz. Obtenção e caracterizacao de materiais argilosos quimicamente ativados para utilização em catálise. Ceramica, 2006, vol. 52, pp. 260-263. https://doi.org/10.1590/s0366-69132006000400008

Bieseki L., Treichel H., Araujo A. S., Pergher S. B. C. Porous materials obtained by acid treatment processing followed by pillaring of montmorillonite clays. Appl. Clay Sci., 2013, vol. 85, pp. 46–52. http://dx.doi.org/10.1016/j.clay.2013.08.044

Kozlowski T. Temperature dependence of the solidification enthalpy as experimentally determined between 245 and 203K for montmorillonite-water systems. Thermochim. Acta., 2016, vol. 634, pp. 12–25. http://dx.doi.org/10.1016/j.tca.2016.04.008

Pálková H., Hronský V., Bizovská V., Madejov, J. Spectroscopic study of water adsorption on Li+, TMA+ and HDTMA+ exchanged montmorillonite. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, vol. 149, pp. 751–761. http://dx.doi.org/10.1016/j.saa.2015.04.065.

Elmchaouri A., Simonot-Grange M. H., Mahboub R. Water vapour adsorption onto Ca2+ Camp–Berteau montmorillonite and comparison with properties of Na+ sample. Thermochim. Acta, 2004, vol. 421, no 1, pp. 193–201. http://dx.doi.org/10.1016/j.tca.2004.03.017

Cancela G. D., Huertas F. J., Taboada E. R., Sánchez-Rasero F., Laguna, A. H. Adsorption of Water Vapor by Homoionic Montmorillonites. Heats of Adsorption and Desorption. J. Colloid Interface Sci., 1997, vol. 185, no2, pp. 343–354 http://dx.doi.org/10.1006/jcis.1996.4572

Оnal M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Appl. Clay Sci., 2007, vol. 37, no 1, pp. 74–80. http://dx.doi.org/10.1016/j.clay.2006.12.004

Woumfo D., Kamga R., Figueras F., Njopwouo D. Acid activation and bleaching capacity of some Cameroonian smectite soil clays. Appl. Clay Sci., 2007, vol. 37, no 1, pp. 149–156. http://dx.doi.org/10.1016/j.clay.2006.12.008

Volzone C., Ortiga J. Influence of the exchangeable cations of montmorillonite on gas adsorptions. Process Saf. Environ. Prot., 2004, vol. 82, no 2, pp. 170–174. http://dx.doi.org/10.1205/095758204322972807

Kharroubi M., Balme S., Henn F., Giuntini J.C., Belarbi H., Haouzi A. Dehydration enthalpy of alkali-cationsexchanged montmorillonite from thermogravimetric analysis. J. Colloid Interface Sci., 2009, vol. 329, no 2, pp. 339–345. http://dx.doi.org/10.1016/j.jcis.2008.09.058

Randelovic M. S., Purenovic M. M., Matovic B. Z., Zarubica A.R., Momcilovic M. Z., Purenovic J. M. Structural, textural and adsorption characteristics of bentonite-based composite. Microporous Mesoporous Mater., 2014, vol. 195, pp. 67–74. http://dx.doi.org/10.1016/j.micromeso.2014.03.031

EL-Akkad T., Flex N., Guindy N., EL-Massry S., Nashed S. Nitrogen and water vapour adsorption on monovalent and divalent montmorillonite derivatives and their heats of immersion in polar liquid. Surface Technology, 1982, vol. 17, no 1, pp. 69 – 77. http://dx.doi.org/10.1016/0376-4583(82)90062-0

Lantenois S., Nedellec Y., Prélot B., Zajac J., Muller F., Douillard J.-M. Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water. J. Colloid Interface Sci., 2007, vol. 316, no 2, pp. 1003–1011. http://dx.doi.org/10.1016/j.jcis.2007.07.024

Elm’chaour A., Simonot-Grange M. Donrkes experimentales d’adsorption du systeme H20(g)/montmorillonite sodique de Camp-Berteau et Modelisation. Thermochim. Acta, 1995, vol. 249, pp. 21–40. http://dx.doi.org/10.1016/0040-6031(95)90668-1

Hatch C. D., Greenaway A. L., Christie M. J., Baltrusaitis, J. Water adsorption constrained Frenkele-Halseye-Hill adsorption activation theory: Montmorillonite and illite. Atmos. Environ., 2014, vol. 87, pp. 26–33. http://dx.doi.org/10.1016/j.atmosenv.2013.12.040

Kadoura A., Nair A. K. N., & Sun S. Adsorption of Carbon Dioxide, Methane, and Their Mixtute by Montmorillonite in the Presence of Water. Microporous and Mesoporous Mater., 2016, vol. 225, pp. 331–341. http://dx.doi.org/10.1016/j.micromeso.2016.01.010

Chavez-Paez M., Van Workum K., DePablo L., DePablo J. J. Monte Carlo simulations of Wyoming sodium montmorillonite hydrates. J. Chem. Phys., 2016, vol. 114, no 3, pp. 1405–1413. http://dx.doi.org/10.1063/1.1322639

Chávez-Páez M., DePablo L., DePablo J. J. Monte Carlo simulations of Ca–montmorillonite hydrates. J. Chem.Phys., 2001, vol. 114, no 24, pp. 10948–10953. http://dx.doi.org/10.1063/1.1374536

Cygan R. T., Liang J. J., Kalinichev A. G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem., 2004, vol. 108, no 4, pp. 1255–1266. http://dx.doi.org/10.1021/jp0363287

Schaef H. T., Loring J. S., Glezakou V. A., Mille, Q. R., Chen J., Owen A. T., Thompson C. J. Competitive Sorption of CO2 and H2O in 2:1 Layer Phyllosilicates. Geochim. Cosmochim. Acta, 2015, vol. 161, pp. 248–257. http://dx.doi.org/10.1016/j.gca.2015.03.027

Fu M. H., Zhang Z. Z., Low P. F. Changes in the properties of a montmorillonite-water system during theadsorption and desorption of water: hysteresis. Clays Clay Miner., 1990, vol. 38, no 5, pp. 485–492. https://doi.org/10.1346/ccmn.1990.0380504

Tarasevich Yu .I., Ovcharenko F. D. Adsorbtsiya na glinistyih mineralah [Adsorption on Clay Minerals]. K.:Nauk.dumka, 1975, 352 p. (in Russian)

Ovcharenko F. D. Gidrofilnost glin i glinistyih mineralov [Hydrophily of Clays and Clay Minerals].К.: izd-vo ANUSSR, 1961, 291 p. (in Russian)

Rakitskaya T.L., Kosheleva N. N., Shkolnikova O. L. Kataliticheskaya aktivnost rastvorennyih i nanesennyih bromidnyih kompleksov medi(II) [Catalytic activity of dissolved and supported bromide complexes of copper(II)]. Koordinats. Himiya, 1981, vol. 7, no 3, pp. 355-358. (in Russian)

Rakitskaya T. L., Abramova N. N., Krishtofikova L. Ya. Adsorbtsiya parov vodyi oksidnyimi nositelyami s nanesennyimi metallokompleksnyimi soedineniyami [Water vapor adsorption by oxide carriers with metal-complex compounds supported on them]. Zhurn. fiz. himii, 1983, vol. 57, no 8, pp. 2055-2057. (in Russian)

Rakitskaya T.L., Ennan A.A., Volkova V.Y. Nizkotemperaturnaja kataliticheskaja ochistka vozduha ot monooksida ugleroda [Low-Temperature Air Purification from Carbon Momoxide]. Ekologiya, Odessa, 2005, 191 p. (in Russian)

Rakitskaya T. L., Dlubovskiy R. M., Kiose T. A., Truba A. S., Oleksenko L. P., Volkova V. Y. Adsorbtsiya parvo vodyi prirodnyim i himicheski modifitsirovannyim bazaltovyim tufom [Water vapor adsorption by natural and chemically modified basalt tuff]. Himiya, fIzika ta tehnologiya poverhni, 2011, vol. 2, no 1, pp. 76-80. (in Russian)

Rakitskaya T. L., Ennan A. A, Kiose T. A., Golubchik K. O., Oleksenko L. P., Dlubovskiy R. M., Geraseva V. G. Vliyanie prodolzhitelnosti kislotno-termalnogo modifitsirovaniya na adsorbtsionno-strukturnyie harakteristiki klinoptilolita [Effect of the time of acid -thermal modification of clinopti lolite on its structure -adsorption characteristics]. Vestnik ONU, 2016, vol. 21, no 1(57), pp. 24-35. (in Russian) https://doi.org/10.7868/s0044453716060182

Rakitskaya T. L., Truba A. S., Ennan A. A, Dlubovskiy R. M. Adsorbtsiya parov vodyi prirodnyimi i modifitsirovannyimi hloridami margantsa (II) i kobalta (II) sorbentami [Water vapor adsorption by sorbents, natural and modified with manganese(II) and cobalt(II) chlorides]. Voprosyi himii i himicheskoy tehnologii, 2014, vol.1, pp. 131-135. (in Russian)

Cakicioglu-Ozkan F., Ulku S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite. Microporous Mesoporous Mater, 2005, vol. 77, no 1, pp. 47–53. https://doi.org/10.1016/j.micromeso.2004.08.013


Пристатейна бібліографія ГОСТ


1. Тарасевич Ю.И., Овчаренко Ф. Д. Строение и химия поверхности слоистых силикатов. – К.: Наук.думка, 1988. – 248 с.

2. Christidis G. E., Scott P. W., Dunham A. C. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece // Appl. Clay Sci. – 1997. – Vol. 12, N 4. – P. 329-347. http://dx.doi.org/10.1016/S0169-1317(97)00017-3

3. Kumar P., Jasra, R. V., Bhat, T.S. Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation // Ind. Eng. Chem. Res. – 1995. – Vol. 34, N 4 – P. 1140-1148. https://doi.org/10.1021/ie00043a053

4. Okada K., Arimitsu N., Kameshima Y., Nakajima A., MacKenzie, K. J. Solid acidity of 2:1 type clay minerals activated by selective leaching // Appl. Clay Sci. – 2006. – Vol. 31, N 3. – P. 185–193. http://dx.doi.org/10.1016/j.clay.2005.10.014

5. Rodrigues M. G. F., Pereira K. R. O., Valenzuela-Diaz. Obtenção e caracterizacao de materiais argilosos quimicamente ativados para utilização em catálise // Ceramica – 2006. – Vol. 52. – P. 260-263. https://doi.org/10.1590/s0366-69132006000400008

6. Bieseki L., Treichel H., Araujo A. S., Pergher S. B. C. Porous materials obtained by acid treatment processing followed by pillaring of montmorillonite clays // Appl. Clay Sci. – 2013. – Vol. 85. – P. 46–52. http://dx.doi.org/10.1016/ j.clay.2013.08.044

7. Kozlowski T. Temperature dependence of the solidification enthalpy as experimentally determined between 245 and 203K for montmorillonite-water systems // Thermochim. Acta. – 2016. – Vol. 634. – P. 12–25. http://dx.doi.org/10.1016/j.tca.2016.04.008

8. Pálková H., Hronský V., Bizovská V., Madejov, J. Spectroscopic study of water adsorption on Li+, TMA+ and HDTMA+ exchanged montmorillonite // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. – 2015. – Vol. 149. – P. 751–761. http://dx.doi.org/10.1016/j.saa.2015.04.065.

9. Elmchaouri A., Simonot-Grange M. H., Mahboub R. Water vapour adsorption onto Ca2+ Camp–Berteau montmorillonite and comparison with properties of Na+ sample // Thermochim. Acta. – 2004. – Vol. 421, N 1. – P. 193–201. http://dx.doi.org/10.1016/j.tca.2004.03.017

10. Cancela G. D., Huertas F. J., Taboada E. R., Sánchez-Rasero F., Laguna, A. H. Adsorption of Water Vapor by Homoionic Montmorillonites. Heats of Adsorption and Desorption // J. Colloid Interface Sci. – 1997. – Vol. 185, N 2. – P. 343–354 http://dx.doi.org/10.1006/jcis.1996.4572

11. Оnal M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments // Appl. Clay Sci. – 2007. – Vol. 37, N 1. – P. 74–80. http://dx.doi.org/10.1016/j.clay.2006.12.004

12. Woumfo D., Kamga R., Figueras F., Njopwouo D. Acid activation and bleaching capacity of some Cameroonian smectite soil clays // Appl. Clay Sci. – 2007. – Vol. 37, N 1. – P. 149–156. http://dx.doi.org/10.1016/j.clay.2006.12.008

13. Volzone C., Ortiga J. Influence of the exchangeable cations of montmorillonite on gas adsorptions // ProcessSaf. Environ. Prot. – 2004. – Vol. 82, N 2. – P. 170–174. http://dx.doi.org/10.1205/095758204322972807

14. Kharroubi M., Balme S., Henn F., Giuntini J.C., Belarbi H., Haouzi A. Dehydration enthalpy of alkali-cationsexchanged montmorillonite from thermogravimetric analysis // J. Colloid Interface Sci. – 2009. – Vol. 329, N 2. – P. 339–345. http://dx.doi.org/10.1016/j.jcis.2008.09.058

15. Randelovic M. S., Purenovic M. M., Matovic B. Z., Zarubica A.R., Momcilovic M. Z., Purenovic J. M. Structural, textural and adsorption characteristics of bentonite-based composite // Microporous Mesoporous Mater.–2014.– Vol. 195. – P. 67–74. http://dx.doi.org/10.1016/j.micromeso.2014.03.031

16. EL-Akkad T., Flex N., Guindy N., EL-Massry S., Nashed S. Nitrogen and water vapour adsorption on monovalent and divalent montmorillonite derivatives and their heats of immersion in polar liquid // Surface Technology. – 1982. – Vol. 17, N 1. – P. 69 – 77. http://dx.doi.org/10.1016/0376-4583(82)90062-0

17. Lantenois S., Nedellec Y., Prélot B., Zajac J., Muller F., Douillard J.-M. Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water// J. Colloid Interface Sci. – 2007. – Vol. 316, N 2. – P. 1003–1011. http://dx.doi.org/10.1016/j.jcis.2007.07.024

18. Elm’chaour A., Simonot-Grange M. Donrkes experimentales d’adsorption du systeme H20(g)/montmorillonite sodique de Camp-Berteau et Modelisation // Thermochim. Acta. – 1995. – Vol. 249. – P. 21–40. http://dx.doi.org/10.1016/0040-6031(95)90668-1

19. Hatch C. D., Greenaway A. L., Christie M. J., Baltrusaitis, J. Water adsorption constrained Frenkele-Halseye-Hill adsorption activation theory: Montmorillonite and illite // Atmos. Environ. – 2014. – Vol. 87. – P. 26–33.http://dx.doi.org/10.1016/j.atmosenv.2013.12.040

20. Kadoura A., Nair A. K. N., & Sun S. Adsorption of Carbon Dioxide, Methane, and Their Mixtute by Montmorillonite in the Presence of Water // Microporous and Mesoporous Mater. – 2016. – Vol. 225. – P. 331–341. http://dx.doi.org/10.1016/j.micromeso.2016.01.010

21. Chavez-Paez M., Van Workum K., DePablo L., DePablo J. J. Monte Carlo simulations of Wyoming sodium montmorillonite hydrates // J. Chem. Phys. – 2016. – Vol. 114, N 3. – P. 1405–1413. http://dx.doi.org/10.1063/1.1322639

22. Chávez-Páez M., DePablo L., DePablo J. J. Monte Carlo simulations of Ca–montmorillonite hydrates//J. Chem. Phys. – 2001. – Vol. 114, N 24. – P. 10948–10953. http://dx.doi.org/10.1063/1.1374536

23. Cygan R. T., Liang J. J., Kalinichev A. G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field // J. Phys. Chem. – 2004. – Vol. 108, N 4. – P. 1255–1266. http://dx.doi.org/10.1021/jp0363287

24. Schaef H. T., Loring J. S., Glezakou V. A., Mille, Q. R., Chen J., Owen A. T., Thompson C. J. Competitive Sorption of CO2 and H2O in 2:1 Layer Phyllosilicates // Geochim. Cosmochim. Acta. – 2015. – Vol. 161. –P. 248–257. http://dx.doi.org/10.1016/j.gca.2015.03.027

25. Fu M. H., Zhang Z. Z., Low P. F. Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water: hysteresis // Clays Clay Miner. – 1990. – Vol. 38, N 5. – P. 485–492. https://doi.org/10.1346/ccmn.1990.0380504

26. Тарасевич Ю. И., Овчаренко Ф. Д. Адсорбция на глинистых минералах. – К.: Наук.думка, 1975. – 352 с.

27. Овчаренко Ф. Д. Гидрофильность глин и глинистых минералов. – К.: изд-во АНУССР, 1961. – 291 с.

8. Ракитская Т. Л., Кошелева Н. Н., Школьникова О. Л. Каталитическая активность растворенных и нанесенных бромидных комплексов меди(II) // Координац. Химия. – 1981. – Т.7, № 3. – С. 355-358.

29. Ракитская Т. Л., Абрамова Н. Н., Криштофикова Л. Я. Адсорбция паров воды оксидными носителями с нанесенными металлокомплексными соединениями // Журн. физ. химии. – 1983. – Т.57, № 8. –С. 2055-2057.

30. Ракитская Т. Л., Эннан А. А., Волкова В. Я. Низкотемпературная каталитическая очистка воздуха от монооксида углерода. – Одесса: Экология, 2005. – 191 с.

31. Ракитская Т. Л., Длубовский Р. М., Киосе Т. А., Труба А. С., Олексенко Л. П., Волкова В. Я. Адсорбция паров воды природным и химически модифицированным базальтовым туфом // Хімія, фізика та технологія поверхні. – 2011. – Т.2, № 1. — С. 76-80.

32. Ракитская Т. Л., Эннан А. А, Киосе Т. А., Голубчик К. О., Олексенко Л. П., Длубовский Р. М., Герасева В. Г. Влияние продолжительности кислотно-термального модифицирования на адсорбционно-структурные характеристики клиноптилолита // Вестник ОНУ – 2016. – Т.21, № 1(57). — С. 24-35. https://doi.org/10.7868/s0044453716060182

33. Ракитская, Т. Л., Труба, А. С., Эннан А. А., Длубовский Р. М. Адсорбция паров воды природными и модифицированными хлоридами марганца (ІІ) и кобальта (ІІ) сорбентами // Вопросы химии и химической технологии. — 2014. – № 1. – С. 131-135.

34. Cakicioglu-Ozkan F., Ulku S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite // Microporous Mesoporous Mater. – 2005. – Vol. 77, N 1. – P. 47–53. https://doi.org/10.1016/j.micromeso.2004.08.013





DOI: https://doi.org/10.18524/2304-0947.2017.1(61).94710

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution-ShareAlike 4.0 International License.