ТЕРМОДИНАМІКА ДИСОЦІАЦІЇ ЕТАНОЛАМОНІЙНИХ КАТІОНІВ У ВОДНИХ РОЗЧИНАХ

Автор(и)

  • R. E. Khoma Одеський національний університет імені І.І. Мечникова; Фізико-хімічний інститут захисту навколишнього середовища і людини, Ukraine
  • А. А.-А. Еnnаn Фізико-хімічний інститут захисту навколишнього середовища і людини, Ukraine
  • A. N. Chebotaryov Одеський національний університет імені І.І. Мечникова, Ukraine
  • S. V. Vodzinskii Одеський національний університет імені І.І. Мечникова, Ukraine
  • A. O. Mayans’kaya Одеський національний університет імені І.І. Мечникова, Ukraine

DOI:

https://doi.org/10.18524/2304-0947.2017.1(61).94707

Ключові слова:

етаноламіни, водні розчини, термодинаміка дисоціації, ентальпійно-ентропійна компенсація

Анотація

Систематизовані та узагальнені літературні дані щодо фізико-хімічних властивостей (Тпл., Ткип., Рп та lgPow) етаноламінів і термодинаміки дисоціації їх онієвих катіонів. Відмічена кореляція між ліпофільністю, що визначена експериментально, та розрахованою методом QSAR. Для моноетаноламонію, діетаноламонію, їх N-метил та N-етил похідних виявлена залежність термодинамічних функцій дисоціації (DH и DS) від lgPow основ. Внаслідок того, що молекули триетаноламіну і TRIS мають більшу кількість Н-донорів та Н-акцепторів, ніж інші етаноламіни, кислотно-основна дисоціація їх онієвих катіонів не підпорядковується зазначеній залежності. Відмічена ентальпійно-ентропійна компенсація, для якої ізотермодинамічна температура дорівнює 303 К.

Посилання

Ochistka tehnologicheskih gazov Pod red. T.A. Semenovoj, I.L. Lejtesa, Мoscow, Chemistry, 1977, 488 p. (in Russian)

Gel’mbol’dt V.O., Gavrilova L.A., Ostapchuk L.V., Ennan, A.A. Hexafluorosilicic acid compounds with 2-ethanolamines. Zhurnal Neorganicheskoi Khimii, 1994, vol. 39, no 1, pp. 43-47. (in Russian)

Blokhin P.V., Kogtev S.E., Petrov A.V., Oblivina T.A. Treatment of exhaust gases with methyldiethanolamine solution to remove sulfur dioxide. Russ. J. Appl. Chem., 2000, vol. 73, no 8, pp. 1417-1419. (in Russian)

Khoma R.E., Shestaka A.A., Ennan A.A., Gelmboldt V.O. On the structure of interaction products of sulfur dioxide with ethanolamines in aqueous solutions. Vіsn. Odes. nac. unіv., Hіm., 2011, vol. 16, no 5, pp. 105–113. (in Russian)

Khoma R.E., Shestaka A.A., Gelmboldt V.O. On interaction of sulfur(IV) oxide with aqueous solutions of ethanolamines. Russ. J. Appl. Chem., 2012, vol. 85, no 11, pp. 1667–1675. https://doi.org/10.1134/s1070427212110067

Khoma R.E., Dlubovskiу R.M., Gelmboldt V.O. Chemisorption of Sulfur (IV) Oxide by Aqueous Solutions of Ethanolamines Under Static Conditions. Russ. J. Gen. Chem., 2016, vol. 86, no 8, pp. 1811-1818. https://doi.org/10.1134/s1070363216080065

Qian J., Sun R., Sun S., Gao J. Computer-Free Group-Addition Method for pKa Prediction of 73 Amines for CO2 Capture J. Chem. Eng. Data., 2017, vol. 62, no 1, pp. 111-122. https://doi.org/10.1021/acs.jced.6b00481

Goldberg R.N., Kishore N., Lennen R.M. Thermodynamic Quantities for the Ionization Reactions of Buffers. J. Phys. Chem. Ref. Data., 2002, vol. 31, no 2, pp. 231-370. https://doi.org/10.1063/1.1416902

Khoma R.E., Gelmboldt V.O., Koroeva L.V., Ennan A.A., Mazepa A.V., Brusilovskiy Yu.E. Spectral characterization of products descriptions of sulphur (IV) oxide ineraction with ethanolamines aqueous solutions. Voprosy khimii i khimicheskoi tekhnologii, 2012, no 1, pp. 133-136. (in Russian).

Khoma R.E., Ennan A.A., Mazepa A.V., Gelmboldt V.O. Spectral characterization of products ineraction of sulphur dioxide with N-alkylated monoethanolamines derivatives aqueous solutions. Voprosy khimii i khimicheskoi tekhnologii, 2013, no 1, pp. 136-138. (in Russian).

Khoma R.E., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Puzan A.N., Ennan A.A., Rakipov I.M. Synthesis and structure of N-(hydroxyethyl)ethylenediammonium sulfite monohydrate Russ. J. Inorg. Chem., 2014, vol.59, no 6, pp. 541-544. https://doi.org/10.1134/S0036023614060096

Khoma R.E., Gel’mbol’dt V.O., Shishkin O.V., Baumer V.N., Ennan A.A. Synthesis, crystal structure, vibrational spectra, and thermochemical transformations of tris(hydroxymethyl)aminomethane. Russ. J. Inorg. Chem., 2014, vol. 59, no 1, pp. 1-6. https://doi.org/10.1134/S0036023614010069

Khoma R.E., Ennan A.A., Shishkin O.V., Baumer V.N., Gel’mbol’dt V.O. Products of interaction between Sulfur(IV) oxide and aqueous solutions of hexamethylendiamine and tert-Butylamine: The crystal structure of hexamethylenediammonium sulfate dihydrate. Russ. J. Inorg. Chem., 2012, vol. 57, no 12, pp. 1559-1562. https://doi.org/10.1134/S003602361212008X

Khoma R.E., Gel’mbol’dt V.O., Baumer V.N., Puzan A.N., Ennan A.A. Methylammonium sulfate: Synthesis and structure. Russ. J. Inorg. Chem., 2015, vol. 60, no 10, pp. 1199-1203. https://doi.org/10.1134/ S0036023615100101

Khoma R.E., Ennan A.A., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Mazepa A.V., Brusilovskii Yu.E. Preparation and some physicochemical properties of benzylammonium sulfates. Russ. J. Gen. Chem., 2014, vol. 84, no 4, pp. 637-641. https://doi.org/10.1134/S1070363214040069

Kiselev A.V. Intermolecular Interactions in Adsorption and Chromatography. Moscow, Vysshaja shkola, 1986, pp. 122-124. (in Russian)

Nishikawa Y., Taguchi K. Ion chromatographic determination of nitrogen dioxide and sulphur dioxide in the atmosphere using triethanolamine-potassium hydroxide-coated cartridges. J. Chromatogr. A., 1987, vol. 396, pp. 251-259. https://doi.org/10.1016/s0021-9673(01)94062-2

Michigami Y., Morooka M., Ueda K. Determination of sulphite and sulphate by ion chromatography using a weakly basic phthalate eluent. J. Chromatogr. A., 1996, vol. 732, no 2, pp. 403–407. https://doi.org/10.1016/0021-9673(95)01326-1

Rokushika S., Hatano H. Miniaturized ion chromatography. J. Chromatogr. Library., 1985, pp. 277-296. https://doi.org/10.1016/s0301-4770(08)60836-2

Rayer A.V., Sumon K.Z., Jaffari L., Henni A. Dissociation Constants (pKa) of Tertiary and Cyclic Amines: Structural and Temperature Dependences. J. Chem. Eng. Data., 2014, vol. 59, no 11, pp. 3805–3813. https://doi.org/10.1021/je500680q

Tagiuri A., Mohamedali M., Henni A. Dissociation Constant (pKa) and Thermodynamic Properties of Some Tertiary and Cyclic Amines from (298 to 333) K. J. Chem. Eng. Data., 2016, vol. 61, no 1, pp. 247-254.

Guljanickij A. Reakcii kislot i osnovanij v analiticheskoj himii. Moscow, Mir, 1975, 240 p. (in Russian)

Chebotarev A.N., Novak I.V. Kislotno-osnovnoe vzaimodejstvie tetraftorbornoj kisloty so slabymi azotsoderzhashhimi organicheskimi osnovanijami Izvestija vuzov. Himija i himicheskaja tehnologija.,1991, vol. 34, no 2, pp. 19-22. (in Russian)

Chebotarev A.N., Khoma R.E. Complexation reactions in the acid-base HBF4 – Amine – H2O systems. Vіsn.Odes. nac. unіv., Hіm., 2004, vol. 9, no 3, pp. 114 – 126. (in Russian)

Chebotaryov A.N., Rakhlickaya E.М., Khoma R.E., Kachan S.V. Potentiometric investigation of the acid-basic equilibria in system «hexafluorosilicic acid – water – nitrogen-containing organic base». Vіsn. Odes. nac. unіv., Hіm., 2005, vol. 10, no 9, pp. 85-96. (in Russian)

Chebotaryov A.N., Khoma R.E., Rakhlickaya E.М. Complexation reactions in acid-base systems H2SiF6-H2O-amine. Voprosy khimii i khimicheskoi tekhnologii, 2009, no 5, pp. 90-96. (in Russian)

Chebotaryov A.N. Composition and relative stability of ion-molecular forms that are realized in the system water – tetrafluoroboric acid – hexamethylenetetramine. Vіsn. Odes. nac. unіv., Hіm., 2013, vol. 18, no 3, pp. 79-88. (in Russian)

Khoma R.E. Thermodynamics of the dissociation of aminomethanesulfonic acid and its N-substituent derivatives at 293-313 K. Russ. J. Phys. Chem., 2017, vol. 91, no 1, pp. 76-79. https://doi.org/10.1134/S0036024417010125

Benezeth P., Wesolowski D.J., Palmer D.A. Potentiometric study of the dissociation quotient of the aqueous ethanolammonium ion as a function of temperature and ionic strength. J. Chem. Eng. Data. – 2003, vol. 48, no1, pp. 171-175. https://doi.org/10.1021/je0201424

Bates R.G., Hetzer H.B. Dissociation constant of the protonated acid form of 2-amino-2-(hydroxymethyl)-1,3-propanediol [tris(hydroxymethyl)-aminomethane] and related thermodynamic quantities from 0 to 500 J. Phys. Chem., 1961, vol. 65, no 4, pp. 667-671. https://doi.org/10.1021/j100822a017

Kim J.-H., Dobrogowska C., Hepler L.G. Thermodynamics of ionization of aqueous alkanolamines. // Can. J. Chem., 1987, vol. 65, no 8, pp. 1726-1728. https://doi.org/10.1139/v87-289

Hamborg E.S., Versteeg G.F. Dissociation constants and thermodynamic properties of amines and alkanolamines (293 to 353) K J. Chem. Eng. Data., 2009, vol. 54, no 4, pp. 1318-1328. https://doi.org/10.1021/je800897v

Hamborg E.S., Versteeg G.F. Dissociation constants and thermodynamic properties of alkanolamines. Energy Procedia., 2009, vol. 1, no 1, pp. 1213-1218. https://doi.org/10.1016/j.egypro.2009.01.159

Hamborg E.S., van Aken C., Versteeg G.F. The effect of aqueous organic solvents on the dissociation constants and thermodynamic properties of alkanolamines. Fluid Phase Equilib., 2010, vol. 291, no 1, pp. 32-39. https://doi.org/10.1016/j.fluid.2009.12.007

Raevsky O.A. Molecular structure descriptors in the computer-aided design of biologically active compounds. Russ. Chem. Rev., 1999, vol. 68, no 6, pp. 505-524. http://dx.doi.org/10.1070/RC1999v068n06ABEH000425

http://hypercube.com

Mackay D., Shiu W.-Y., Ma K.-C., Lee S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. IV Nitrogen and Sulfur Containing Compounds and Pesticides, 2nd Ed., CRC Press., 2006, pp. 3236-3242. https://doi.org/10.1201/9781420044393

Safety Data Sheet N-Methylethanolamine – BASF Available at: http://worldaccount.basf.com/wa/NAFTA/ Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30036882/.pdf (accessed 12 January 2017)

Safety Data Sheet N,N-Dimethylethanolamine – BASF Available at: http://worldaccount.basf.com/wa/ NAFTA~es_MX/Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30041927/.pdf (accessed 12 January 2017)

2-Diethylaminoethanol – CDC Available at: https://www.cdc.gov/niosh/ipcsneng/neng0257.html (accessed 12 January 2017)

N-Methyldiethanolamine – CDC Available at: https://www.cdc.gov/niosh/ipcsneng/neng1600.htm l (accessed 12 January 2017)

Trizma® (TRIS base) – Sigma-Aldrich Available at: https://www.nwmissouri.edu/naturalsciences/sds/t/Trizma%20base.pdf (accessed 12 January 2017)

Bower V.E., Robinson R.A., Bates R.G. Acid dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 oC J. Res. Natl. Bur. Stand., 1962, vol. 66A, no1, pp. 71–75. https://doi.org/10.6028/jres.066A.008

Hamborg E.S., Niederer J.P.M., Versteeg G.F. Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K. J. Chem. Eng. Data., 2007, vol. 52, no 6, pp. 2491-2502. https://doi.org/10.1021/je700275v

Roy R.N., Robinson R.A., Bates R.G. Thermodynamics of the two dissociation steps of N-tris(hydroxymethyl) methylglycine (Tricine) in water from 5 to 500. J. Am. Chem. Soc., 1973, vol. 95, no 25, pp. 8231–8235. https://doi.org/10.1021/ja00806a004

Box K.J., Comer J.E. Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. Curr. Drug Metab., 2008, vol. 9, no 9, pp. 869–878. https://doi.org/10.2174/138920008786485155

Burakowski A., Gliński J. Hydration Numbers of Nonelectrolytes from Acoustic Methods Chem. Rev., 2012, vol. 112, no 4, pp. 2059–2081. https://doi.org/10.1021/cr2000948

Khoma R.E., Dlubovskiу R.M., Gelmboldt V.O. Chemisorption of Sulfur (IV) Oxide by Aqueous Solutions of Ethanolamines Under Static Conditions. Russ. J. Gen. Chem., 2016, vol. 86, no 8, pp. 1811-1818. https://doi.org/10.1134/S1070363216080065

Likhtenshtein G.I. The Compensation effect. Chemical Encyclopedy, Ed. by N. S. Zefirov, Sov. Entsiklopedia, Moscow, 1990, Vol. 2, p. 868 (in Russian).

Starikov E.B. Norden B. Entropy-enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chem. Phys. Lett., 2012, vol. 538, pp. 118–120. https://doi.org/10.1016/j.cplett.2012.04.028

##submission.downloads##

Опубліковано

2017-03-03

Номер

Розділ

Статті