АНТИФОЛАТИ ДЛЯ ПРОТИРАКОВОЇ ХІМІОТЕРАПІї. ЧАСТИНА І

V. A. Bacherikov

Анотація


В огляді розглянуто структури основних протиракових антифолатів, їх внутрішньо-клітинні ферментні цілі, механізми їх протипухлинної дії. Детально обговорено фолатні антиметаболіти, отримані в останнє десятиліття і тенденції в пошуку високоефективних інгібіторів метаболічних шляхів фолієвої кислоти. Розглянуто переваги і обмеження антифолатів, які можуть бути використані в дизайні нових препаратів протипухлинної хіміотерапії.

Ключові слова


антифолати; антиметаболіти; протипухлинна хіміотерапія

Повний текст:

PDF (Русский)

Пристатейна бібліографія ГОСТ


Lazar G., Zhang H., Goodman H.M. The origin of the bifunctional dihydrofolate reductase-thymidylate synthase isogenes of Arabidopsis thaliana. // Plant J. – 1993. – Vol. 3 (5). – P. 657-668. http://dx.doi.org/10.1111/j.1365-313x.1993.00657.x 

Fujioka M. Purification and properties of serine hydroxymethylase from soluble and mitochondrial fractions of rabbit liver. // biochim. biophys. Acta. – 1969. – Vol. 185 (2). – P. 338-349. http://dx.doi.org/10.1016/0005-2744(69)90427-6 

Griffin M.J., Brown G.M. The biosynthesis of folic acid. III. Enzymatic formation of dihydrofolic acid from dihydropteroic acid and of tetrahydropteroylpolyglutamic acid compounds from tetrahydrofolic acid. // J. biol. Chem. – 1964. – Vol. 239. – P. 310-316.

Cherest H., Thomas D., Surdin-Kerjan Y. Polyglutamylation of folate coenzymes is necessary for methionine biosynthesis and maintenance of intact mitochondrial genome in Saccharomyces cerevisiae. // J. biol. Chem. – – Vol. 275 (19). – P. 14056-14063. http://dx.doi.org/10.1074/jbc.275.19.14056 

Yao R., Nimec Z., Ryan T.J., Galivan J. Identification, cloning, and sequencing of a cDNA coding for rat gamma-glutamyl hydrolase. // J. biol. Chem. – 1996. – Vol. 271 (15). – P. 8525-8528. http://dx.doi.org/10.1074/jbc.271.15.8525 

Mendelsohn L.G., Shih C., Schultz R.M., Worzalla J.F. biochemistry and pharmacology of glycinamide ribonucleotide formyltransferase inhibitors: Ly309887 and lometrexol. // Invest. New Drugs. – 1996. – Vol. 14 (3). – P. 287-294. http://dx.doi.org/10.1007/bf00194532 

McLeod H.L., Cassidy J., Powrie R.H., Priest D.G., Zorbas M.A., Synold T.W., Shibata S., Spicer D., Bissett D., Pithavala Y.K., Collier M.A., Paradiso L.J., Roberts J.D. Pharmacokinetic and pharmacodynamic evaluation of the glycinamide ribonucleotide formyltransferase inhibitor AG2034. // Clinical Cancer Research. – 2000. – Vol. 6 (7). – P. 2677-2684.

Hartman S.C., Buchanan J.M. biosynthesis of the purines. xxVI. The identification of the formyl donors of the transformylation reactions. // J. biol. Chem. – 1959. – Vol. 234 (7). – P. 1812-1816.

Smith G.K., Benkovic P.A., Benkovic S.J. L(-)-10-Formyltetrahydrofolate is the cofactor for glycinamide ribonucleotide transformylase from chicken liver. // biochemistry. – 1981. – Vol. 20 (14). – P. 4034-4036. http://dx.doi.org/10.1021/bi00517a013 

Jolivet J., Cowan K.H., Curt G.A., Clendeninn N.J., Chabner B.A. The pharmacology and clinical use of methotrexate. // N. Engl. J. Med. – 1983. – Vol. 309 (18). – P. 1094-1104. http://dx.doi.org/10.1056/nejm198311033091805 

Ross J.F., Wang H., Behm F.G., Mathew P., Wu M., Booth R., Ratnam M. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. // Cancer. – 1999. – Vol. 85 (2). – P. 348-357. http://dx.doi.org/10.1002/(sici)1097-0142(19990115)85:2<348::aid-cncr12>3.0.co;2-4 

Kamen B.A., Smith A.K. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulationwith an emphasis on cell models in vitro. // Adv. Drug Deliv. Rev. – 2004. – Vol. 56 (8). – P. 1085-1097. http://dx.doi.org/10.1016/j.addr.2004.01.002 

Jukes T.H. Searching for magic bullets: early approaches to chemotherapy-antifolates, methotrexate the bruce F. Cain memorial award lecture. // Cancer Res. – 1987. – Vol. 47 (21). – P. 5528-5536.

Takimoto C.H. Antifolates in clinical development. // Semin. Oncol. – 1997. – Vol. 24 (5 Suppl 18). – P. S18-40.-s18-51.

Taylor E.C., Harrington P.J., Fletcher S.R., Beardsley G.P., Moran R.G. Synthesis of the antileukemic agents, 10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. // J. Med. Chem. – 1985. – Vol. 28 (7). – P. 914-921. http://dx.doi.org/10.1021/jm00145a012 

Taylor E.C., Hamby J.M., Shih C., Grindey G.B., Rinzel S.M., Beardsley G.P., Moran R.G. Synthesis and antitumor activity of 5-deaza-5,6,7,8-tetrahydrofolic acid and its N10-substituted analogues. // J. Med. Chem. – 1989. – Vol. 32 (7). – P. 1517-1522. http://dx.doi.org/10.1021/jm00127a019 

Переводчикова Н. И. М.А.Ф. Изменение возможностей химиотерапии немелкоклеточного рака легкого (НМРЛ) с введением в практику новых противоопухолевых препаратов – состояние проблемы в 2002 г. // Практическая онкология. – 2002. – Vol. 3 (4). – P. 282-294.

Hakala M.T. On the role of drug penetration in amethopterin resistance of Sarcoma-180 cells in vitro. // biochim. biophys. Acta. – 1965. – Vol. 102 (1). – P. 198-209.  http://dx.doi.org/10.1016/0926-6585(65)90213-x 

Nair M.G. In The Chemistry of Antitumor Agents. – william D. E., Ed. – Glasgow and London. – blackie andSon. – 1989. – P. 202.

Galivan J. 5-Methyltetrahydrofolate transport by hepatoma cells and methotrexate-resistant sublines in culture. // Cancer Res. – 1981. – Vol. 41 (5). – P. 1757-1762.

Rosowsky A. Progress in Medicinal Chemistry. – Amsterdam. – Elsevier Science. – 1989. – Vol. 26. – P.252.

Sirotnak F.M.B., J. J.; Ensminger, W. B.; Montgomery, J. A. Folate antagonists as therapeutic agents. – Academic Press. – 1984. Vol. 1, 2.

Blakley R.L., Benkovic S.J. Folates and pterins: Chemistry and biochemistry of folates. – wiley. – 1984.

Hitchings G.H., Smith S.L. Dihydrofolate reductases as targets for inhibitors. // Adv. Enzyme Regul. – 1980. – Vol. 18. – P. 349-371  http://dx.doi.org/10.1016/0065-2571(80)90025-4 

Palmer D.C., Skotnicki J.S., Taylor E.C. Synthesis of analogues of folic acid, aminopterin and methotrexate as antitumour agents. // Prog. Med. Chem. – 1988. – Vol. 25. – P. 85-231.  http://dx.doi.org/10.1016/s0079-6468(08)70278-9 

Mullin R.J., Keith B.R., Bigham E.C., Duch D.S., Ferone R., Heath L.S., Singer S., Waters K.A., Wilson H.R. In vivo antitumor activity and metabolism of a series of 5-deazaacyclotetrahydrofolate (5-DACTHF) analogues. // biochem. Pharmacol. – 1992. – Vol. 43 (7). – P. 1627-1634. http://dx.doi.org/10.1016/0006-2952(92)90222-5 

Rosowsky A.B., H.; Wright, J. E.; Moran, R. G. 5-Deaza-7-desmethylene analogues of 5,10-methylene-5,6,7,8-tetrahydrofolic acid and related compounds: Synthesis and in vitro biological activity. // J. Heterocycl. Chem. – – Vol. 31. – P. 1241–1250. http://dx.doi.org/10.1002/jhet.5570310522 

Grivsky E.M., Lee S., Sigel C.W., Duch D.S., Nichol C.A. Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. // J. Med. Chem. – 1980. – Vol. 23 (3). – P. 327-329. http://dx.doi.org/10.1021/jm00177a025 

Kamen B. A. C.P.D., Bertino J. R. Chapter 49. Pharmacokinetics of MTx. In Holland-Frei Cancer Medicine., th edition ed. Kufe DwP. R., weichselbaum RR, et al., Ed. – Hamilton (ON). – bC Decker. – 2003. Available from: http://www.ncbi.nlm.nih.gov/books/NbK13233/

Taylor I.W., Slowiaczek P., Friedlander M.L., Tattersall M.H. Selective toxicity of a new lipophilic antifolate, bw301U, for methotrexate-resistant cells with reduced drug uptake. // Cancer Res. – 1985. – Vol. 45 (3). – P. 978-982.

Gangjee A., Zhu Y., Queener S.F. 6-Substituted 2,4-diaminopyrido[3,2-d]pyrimidine analogues of piritrexim as inhibitors of dihydrofolate reductase from rat liver, Pneumocystis carinii, and Toxoplasma gondii and as antitumor agents. // J. Med. Chem. – 1998. – Vol. 41 (23). – P. 4533-4541. http://dx.doi.org/10.1021/jm980206z 

Lin J.T., Bertino J.R. Trimetrexate: a second generation folate antagonist in clinical trial. // J. Clin. Oncol. – – Vol. 5 (12). – P. 2032-2040.

Rosowsky A., Papoulis A.T., Forsch R.A., Queener S.F. Synthesis and antiparasitic and antitumor activity of 2, -diamino-6-(arylmethyl)-5,6,7,8-tetrahydroquinazoline analogues of piritrexim. // J. Med. Chem. – 1999. – Vol. 42 (6). – P. 1007-1017. http://dx.doi.org/10.1021/jm980572i 

Elslager E.F., Johnson J.L., Werbel L.M.Folate antagonists. 20. Synthesis and antitumor and antimalarial properties of trimetrexate and related 6-[(phenylamino)methyl]-2,4-quinazolinediamines. // J. Med. Chem. – – Vol. 26 (12). – P. 1753-1760.

Manchand P.S.R., P.; Belica, P. S.; Olivea, G. V.; Perrota, A. V.; Wong, H. S. . Syntheses of antibacterial 2,4-diamino-5-benzylpyrimidines. Ormetoprim and trimethoprim. // J. Org. Chem. . – 1992. – Vol. 57. – P. 3531–3535. http://dx.doi.org/10.1021/jo00039a006 

Russell P.B.H., G. H. 2,4-Diaminopyrimidines as Antimalarials. III. 5-Aryl Derivatives. . // J. Am. Chem. Soc.. – 1951. – Vol. 73. – P. 3763–3770. http://dx.doi.org/10.1021/ja01152a060 

de Jager R., Dupont D., Rodzynek J.J., Dorlet C., Lagrange G. Phase I clinical trial and pharmacology of ,4-diamino-5-(3’,4’-dichlorophenyl)-6-methylpyrimidine (metoprine) (DDMP) and folinic acid (CF). // Cancer Chemother. Pharmacol. – 1981. – Vol. 6 (1). – P. 75-80. http://dx.doi.org/10.1007/bf00253013 

Bertino J.R., Lindquist C. In Advances in Chemotherapy. Carter S. K., Goldin, A., Kuretani, K., Mathe, G., Sakurai, y., Tsukagoshi, S., Umegara, b., Ed. – Tokyo, University Park, baltimore. – Japan Scientific. – 1978. P. 155.

Piper J.R., Johnson C.A., Krauth C.A., Carter R.L., Hosmer C.A., Queener S.F., Borotz S.E., Pfefferkorn E.R. Lipophilic antifolates as agents against opportunistic infections. 1. Agents superior to trimetrexate and piritrexim against Toxoplasma gondii and Pneumocystis carinii in in vitro evaluations. // J. Med. Chem. – 1996. – Vol. 39 (6). – P. 1271-1280. http://dx.doi.org/10.1021/jm950760y 

Gangjee A., Devraj R., Queener S.F. Synthesis and dihydrofolate reductase inhibitory activities of 2,4-diamino-5-deaza and 2,4-diamino-5,10-dideaza lipophilic antifolates. // J. Med. Chem. – 1997. – Vol. 40 (4). – P. 470-478. http://dx.doi.org/10.1021/jm9606913 

Gangjee A., Vasudevan A., Queener S.F. Synthesis and biological evaluation of nonclassical 2,4-diamino-5-methylpyrido[2,3-d]pyrimidines with novel side chain substituents as potential inhibitors of dihydrofolate reductases. // J. Med. Chem. – 1997. – Vol. 40 (4). – P. 479-485. http://dx.doi.org/10.1021/jm960734f 

Rosowsky A., Cody V., Galitsky N., Fu H., Papoulis A.T., Queener S.F. Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2, 4-diaminopteridine analogues with a bridged diarylamine side chain. // J. Med. Chem. – 1999. – Vol. 42 (23). – P. 4853-4860. http://dx.doi.org/10.1021/jm990331q 

Takimoto C.H. New Antifolates: Pharmacology and Clinical Applications. // Oncologist. – 1996. – Vol. 1 (1 & 2). – P. 68-81.

Lane H.C., Laughon B.E., Falloon J., Kovacs J.A., Davey R.T., Jr., Polis M.A., Masur H. NIH conference. Recent advances in the management of AIDS-related opportunistic infections. // Ann. Intern. Med. – 1994. – Vol. 120 (11). – P. 945-955. 

Ramanathan R.K., Lipsitz S., Asbury R.F., Qazi R., Greenberg B.R., Haller D.G. Phase II trial of trimetrexate for patients with advanced gastric carcinoma: an Eastern Cooperative Oncology Group study (E1287). // Cancer. – – Vol. 86 (4). – P. 572-576. http://dx.doi.org/10.1002/(sici)1097-0142(19990815)86:4<572::aid-cncr5>3.0.co;2-# 

Benfield T., Atzori C., Miller R.F., Helweg-Larsen J. Second-line salvage treatment of AIDS-associated Pneumocystis jirovecii pneumonia: a case series and systematic review. // J. Acquir. Immune Defic. Syndr. – – Vol. 48 (1). – P. 63-67. http://dx.doi.org/10.1097/qai.0b013e31816de84d 

Khorsand M., Lange J., Feun L., Clendeninn N.J., Collier M., Wilding G. Phase II trial of oral piritrexim in advanced, previously treated transitional cell cancer of bladder. // Invest. New Drugs. – 1997. – Vol. 15 (2). – P. 157-163.

Alberto P., Brugarolas A., Hansen H.H., Cavalli F., Klepp O., Renard J. Phase II study of diamino-dichlorophenyl-methylpyrimidine (DDMP) with folinic acid (CF) protection and rescue. // Eur. J. Cancer. – 1980. – Vol. 16(9). – P. 1243-1249.  http://dx.doi.org/10.1016/0014-2964(80)90184-x 

Browman G.P., Gorka C., Mehta C., Lazarus H., Abelson H.T. Studies with a 2,4-diamino-5-(3’,4’-dichlorophenyl)-6-methylpyrimidine (DDMP)-resistant L1210 leukemia cell line without cross-resistance to methotrexate. // biochem. Pharmacol. – 1980. – Vol. 29 (16). – P. 2241-2245. http://dx.doi.org/10.1016/0006-2952(80)90204-x 

Serano R.D., Sigel C.W., Nichol C.A., Bigner D.D. Evaluation of the lipid-soluble diaminopyrimidines, metoprine and etoprine, in the avian sarcoma virus rat glioma model. // Cancer Treat. Rep. – 1982. – Vol. 66 (1). – P. 99-106.

Samotaeva I.S., Birioukova L.M., Midzyanovskaya I.S., Kuznetsova G.D., Bazyan A.S., Tuomisto L. Metoprine induced behavioral modifications and brain regional histamine increase in wAG/Rij and wistar rats. // Epilepsy Res. – 2012. – Vol. 101 (1-2). – P. 148-156.  http://dx.doi.org/10.1016/j.eplepsyres.2012.03.016 

Su T.L., Watanabe K.A. Chemistry of the pyrrolo[3,4-c]pyrido[2,3-d]pyrimidine system. Synthesis of ,7-dihydropyrrolo[3,4-c]pyrido[2,3-d]pyrimidines, a novel ring system with potential biological interest. // J.Org. Chem. – 1989. – Vol. 54 (1). – P. 220-224. http://dx.doi.org/10.1021/jo00262a046 

Su T.-L., Yang Y.-K., Huang J.-T., Ren W.-Y., Watanabe K.A., Chou T.-C. Synthesis of 4-[(1,3-diaminopyrro lo[3′,4′:4,5]pyrido[2,3-d]-pyrimidin-8-yl)benzoyl]-L-glutamic acid as a potential antifolate. // J. Heterocyclic Chem.. – 1993. – Vol. 30 (5). – P. 1437-1443. http://dx.doi.org/10.1002/jhet.5570300542 

Huang Y.L., Lin C.F., Lee Y.J., Li W.W., Chao T.C., Bacherikov V.A., Chen K.T., Chen C.M., Su T.L. Non-classical antifolates, 5-(N-phenylpyrrolidin-3-yl)-2,4,6-triaminopyrimidines and 2,4-Diamino-6(5H)-oxopyrimidines, synthesis and antitumor studies. // bioorg. Med. Chem. – 2003. – Vol. 11 (1). – P. 145-157. http://dx.doi.org/10.1016/s0968-0896(02)00238-9 

Baccanari D.P., Kuyper L.F. basis of selectivity of antibacterial diaminopyrimidines. // J. Chemother. – 1993. – Vol. 5 (6). – P. 393-399.

Sasso S.P., Gilli R.M., Sari J.C., Rimet O.S., Briand C.M. Thermodynamic study of dihydrofolate reductase inhibitor selectivity. // biochim. biophys. Acta. – 1994. – Vol. 1207 (1). – P. 74-79. http://dx.doi.org/10.1016/0167-4838(94)90053-1 

Blakley R.L. Eukaryotic Dihydrofolate Reductase. In Advances in Enzymology and Related Areas of Molecular biology. – John wiley & Sons, Inc. – 2006. – P. 23-102.

McGuire J.J. Anticancer antifolates: current status and future directions. // Curr. Pharm. Des. – 2003. – Vol. 9 (31). – P. 2593-2613. http://dx.doi.org/10.2174/1381612033453712 

Kompis I.M., Islam K., Then R.L. DNA and RNA synthesis: antifolates. // Chem. Rev. – 2005. – Vol. 105 (2). – P. 593-620. http://dx.doi.org/10.1021/cr0301144 

Marsham P.R., Hughes L.R., Jackman A.L., Hayter A.J., Oldfield J., Wardleworth J.M., Bishop J.A., O’Connor B.M., Calvert A.H. Quinazoline antifolate thymidylate synthase inhibitors: heterocyclic benzoyl ring modifications. // J. Med. Chem. – 1991. – Vol. 34 (5). – P. 1594-1605. http://dx.doi.org/10.1021/jm00109a011 

Gangjee A., Zeng Y., McGuire J.J., Kisliuk R.L. Synthesis of classical, four-carbon bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. // J. Med. Chem. – – Vol. 48 (16). – P. 5329-5336. http://dx.doi.org/10.1021/jm058213s 

Calvert A.H., Alison D.L., Harland S.J., Robinson B.A., Jackman A.L., Jones T.R., Newell D.R., Siddik Z.H., Wiltshaw E., McElwain T.J., et al. A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor, N10-propargyl-5,8-dideazafolic acid, Cb3717. // J. Clin. Oncol. – 1986. – Vol. 4 (8). – P. 1245-1252.

Bisset G.M., Pawelczak K., Jackman A.L., Calvert A.H., Hughes L.R. Syntheses and thymidylate synthase inhibitory activity of the poly-gamma-glutamyl conjugates of N-[5-[N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino ]-2-thenoyl]-L-glutamic acid (ICI D1694) and other quinazoline antifolates. // J.Med. Chem. – 1992. – Vol. 35 (5). – P. 859-866. http://dx.doi.org/10.1021/jm00083a008 

Keyomarsi K., Samet J., Molnar G., Pardee A.B. The thymidylate synthase inhibitor, ICI D1694, overcomes translational detainment of the enzyme. // J. biol. Chem. – 1993. – Vol. 268 (20). – P. 15142-15149.

Widemann B.C., Balis F.M., Godwin K.S., McCully C., Adamson P.C. The plasma pharmacokinetics and cerebrospinal fluid penetration of the thymidylate synthase inhibitor raltitrexed (Tomudex) in a nonhuman primate model. // Cancer Chemother. Pharmacol. – 1999. – Vol. 44 (6). – P. 439-443. http://dx.doi.org/10.1007/s002800051116 

Wilson K.S., Malfair Taylor S.C. Raltitrexed: optimism and reality. // Expert Opin. Drug Metab. Toxicol. – 2009. – Vol. 5 (11). – P. 1447-1454. http://dx.doi.org/10.1517/17425250903307455 

Kelly C., Bhuva N., Harrison M., Buckley A., Saunders M. Use of raltitrexed as an alternative to 5-fluorouracil and capecitabine in cancer patients with cardiac history. // Eur. J. Cancer. – 2013. – Vol. 49 (10). – P. 2303-2310. http://dx.doi.org/10.1016/j.ejca.2013.03.004 

Gangjee A., Lin X., Kisliuk R.L., McGuire J.J. Synthesis of N-{4-[(2,4-diamino-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benz oyl}-L-glutamic acid and N-{4-[(2-amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-L-glutamic acid as dual inhibitors of dihydrofolate reductase and thymidylate synthase and as potential antitumor agents. // J. Med. Chem. – 2005. – Vol. 48 (23). – P. 7215-7222.  http://dx.doi.org/10.1021/jm058234m 

Gangjee A., Jain H.D., Phan J., Lin X., Song X., McGuire J.J., Kisliuk R.L. Dual inhibitors of thymidylate synthase and dihydrofolate reductase as antitumor agents: design, synthesis, and biological evaluation of classical and nonclassical pyrrolo[2,3-d]pyrimidine antifolates(1). // J. Med. Chem. – 2006. – Vol. 49 (3). – P. 1055-1065.  http://dx.doi.org/10.1021/jm058276a 

Gangjee A., Lin X. CoMFA and CoMSIA analyses of Pneumocystis carinii dihydrofolate reductase, Toxoplasma gondii dihydrofolate reductase, and rat liver dihydrofolate reductase. // J. Med. Chem. – 2005. – Vol. 48 (5). – P. 1448-1469. http://dx.doi.org/10.1021/jm040153n 

Gangjee A., Yu J., Copper J.E., Smith C.D. Discovery of novel antitumor antimitotic agents that also reverse tumor resistance. // J. Med. Chem. – 2007. – Vol. 50 (14). – P. 3290-3301. http://dx.doi.org/10.1021/jm070194u 

Gangjee A., Li W., Yang J., Kisliuk R.L. Design, synthesis, and biological evaluation of classical and nonclassical 2-amino-4-oxo-5-substituted-6-methylpyrrolo[3,2-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors. // J. Med. Chem. – 2008. – Vol. 51 (1). – P. 68-76. http://dx.doi.org/10.1021/jm701052u 

Gangjee A., Jain H.D., Queener S.F., Kisliuk R.L. The effect of 5-alkyl modification on the biological activity of pyrrolo[2,3-d]pyrimidine containing classical and nonclassical antifolates as inhibitors of dihydrofolate reductase and as antitumor and/or antiopportunistic infection agents. // J. Med. Chem. – 2008. – Vol. 51 (15). – P. 4589-4600. http://dx.doi.org/10.1021/jm800244v 

Gangjee A., Qiu Y., Li W., Kisliuk R.L. Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine antifolates. // J. Med. Chem. – 2008. – Vol. 51 (18). – P. 5789-5797. http://dx.doi.org/10.1021/jm8006933 

Gangjee A., Li W., Kisliuk R.L., Cody V., Pace J., Piraino J., Makin J. Design, synthesis, and x-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents. // J. Med. Chem. – 2009. – Vol. 52 (15). – P. 4892-4902.  http://dx.doi.org/10.1021/jm900490a 





DOI: https://doi.org/10.18524/2304-0947.2013.3(47).31125

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution-ShareAlike 4.0 International License.