• Yu. Shesterenko Фізико-хімічний інститут ім. О.В. Богатського НАН України, Ukraine
  • I. Romanovska Фізико-хімічний інститут ім. О.В. Богатського НАН України, Ukraine
  • O. Sevastyanov Фізико-хімічний інститут ім. О.В. Богатського НАН України, Ukraine
  • A. Karpenko Фізико-хімічний інститут ім. О.В. Богатського НАН України, Ukraine
  • S. Zanoza Фізико-хімічний інститут ім. О.В. Богатського НАН України, Ukraine


Ключові слова:

tyrosinase, Agaricus bisporus, isolation, inhibitor, 2, 7-dihydroxynaphthalene


Melanin pigmentation of skin plays the most important role in the protection of organism against UV-irradiation, but the excessive accumulation of melanin brings to toxic melanodermia, melasma, lentigo and other skin lesions. Tyrosinase is the key enzyme of skin melanin pigment biosynthesis. In spite of certain progress in investigation of natural and synthetic tyrosinase inhibitors, actuality of such studies is of a high level, because the existing inhibitors are in some cases unstable, expensive, toxic, requires complex methods of synthesis or isolation from natural sources. The aim of the work is screening of new tyrosinase inhibitors, using the enzyme, isolated from Agaricus bisporus.

Tyrosinase was isolated from Agaricus bisporus mushrooms by a modified method. It was found, that the introduction of polyethylene glycol 4000 in the extraction process promotes 3-fold reduction of polyphenol content, which leads to increase purity of enzyme with an increase in its activity by 25%. A search for new tyrosinase inhibitors among a wide range of compounds, including derivatives of 3-chloro-1,4-naphthoquinone, isatin, 3-hydroxy-2-naphthoic acid, etc was conducted. The studied substances did not displayed inhibitory effect at concentration of 0,1-0,5 mmol/dm3. It is known, that the natural substrate of mushroom tyrosinase is 1,8-dihydroxynaphthalene, thus it was supposed that the 2,7-dihydroxynaphthalene may be prospective inhibitor of enzyme activity. It was shown, that the concentration of half-maximal inhibition of tyrosinase monophenolase activity by 2,7-dihydroxynaphthalene is close to that of kojic acid – classic inhibitor of melanogenesis. It was found, that 2,7-dihydroxynaphthalene exerts inhibitory action only on monophenolase activity of tyrosinase in contrast to kojic acid, which inhibits both monophenolase and diphenolase enzyme activity.


Bartlett A.F., Dickel D.F., Taylor W.I. The alkaloids of tabernanthe iboga. Part IV. The structures of ibogamine, ibogaine, tabernanthine and voacangine. J. Am. Chem. Soc., 1958, vol. 80, no 1, pp. 126–136. https://doi. org/10.1021/ja01534a036

Borovansky J., Riley P.A. Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions. Weinheim, John Wiley & Sons, 2011. 424 p.

Caboni L., Egan B., Kelly B., Blanco F., Fayne D., Meegan M.J., Lloyd D.G. Structure-activity relationships in non-ligand binding pocket (NonLBP) diarylhydrazide antiandrogens. J. Chem. Inf. Model., 2013, vol. 53, no 8, pp. 2116 – 2130.

Chen C.Y., Lin L.C., Yang W.F. An updated organic classification of tyrosinase inhibitors of melanin biosynthesis. Curr. Org. Chem., 2015, vol. 19, pp. 4-18.

Dregeris Ya.Ya., Liepinya I.Ya., Freimanis Ya.E. Sintez i svoystva kompleksov i avtokompleksov s perenosom zaryada. Izvestiya AN Latviyskoy SSR, 1977, vol. 4, pp. 136-164 (in Russian).

Duran N., Rosa M.A., D’Annibale A. Application of laccase and tyrosinase (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. , 2002, vol. 31, pp. 907 – 931. s0141-0229(02)00214-4

Zhungiyetu G.I., Rekhter M.A. Izatin i yego proizvodnyye (Izatin and its derivatives). Kishinev, Shtiintsa, 1977, p. 92 (in Russian).

Halaouli S., Asther M., Sigoillot I.-C. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological application. J. Appl. Microbiol., 2006, vol. 100, pp. 219-232. https://doi. org/10.1111/j.1365-2672.2006.02866.x

Hartree E.F. Determination of protein: a modification of the Lowry method, that gives a linear photometric response. Anal. Biochem., 1972, vol. 48, pp. 422-427.

Ikehata K. Nicell J.A. Color and toxicity removal following tyrosinase – catalyzed oxidation of phenols. Biotechnol. Prog., 2000, vol. 16, no 4, pp. 533-540.

Lee S.Y., Baek N., Nam T.G. Natural, semisynthetic and synthetic tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem., 2015, vol. 31, pp. 3-13.

Leeuwen J. V., Wichers H.J. Tyrosinase activity and isoform composition in separate tissues during development of Agaricus bisporus fruit bodies. Mycological Res., 1999, vol. 103, pp. 413-418. S095375629800731X

Loizzo M.R., Tundis R., Menichini F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr. Rev. Food Science Food Saf., 2012, vol. 11, pp. 378-398. 4337.2012.00191.x

Mnjoyan A.L. Sintezy geterotsiklicheskikh soyedineniy (Syntheses of heterocyclic compounds), Yerevan, Izdatel’stvo AN ArmSSR, 1985, no 15, p. 56 (in Russian).

Mnjoyan A.L. Sintezy geterotsiklicheskikh soyedineniy (Syntheses of heterocyclic compounds), Yerevan, Izdatel’stvo AN ArmSSR, 1959, no 4, p. 54 (in Russian).

Cohen E.M., Lerner L.L. Tyrosinase concentrate and extractant and method for making the same, Patent USA, no 2 956929. 1960.

Pintus F., Matos M.J., Vilar S. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies. Bioorg. Med. Chem., 2017, vol. 25, pp. 1687-1695.

Rossi A.M., Perez, M.I. Treatment of hyperpigmentation. Facial Plastic Surgery Clinics of North America, 2011, vol. 19, pp. 313-324.

Seki H., Xue S., Hixon M.S., Pellett S., Remes M., Johnsons E.A., Janda K.D. Toward the discovery of dual inhibitors for botulinum neurotoxin A: concomitant targeting of endocytosis and light chain protease activity. Chem. Commun., 2015, vol. 51, pp. 6226 – 6229.

Singleton V. L., Othofer R., Lamnela-Raventos R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzym., 1999, vol. 299, pp. 152-178. https://doi. org/10.1016/S0076-6879(99)99017-1

Surendra N.P., Singh U.K., Srivastava B.K., Kukreja P. Synthesis and anticonvulsant activity of substituted isatin-3-oximes. Intern. J. Synth. Charact., 2012, vol. 1, no 5, pp. 45 – 49.

Shishkina RP, Ektova LP, Matoshina KI. and Fokin K.P. Sintez 2,3-bisaminoproizvodnykh 1,4-naftokhinona. Izvestiya Cibirskogo otdeleniya AN SSSR, 1982, vol. 12, no 5, pp. 136-141. (in Russian).

Xie W., Zhang H., He J. Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 530-532. https://

Yang Y.F., Lai X.Y., Lai G.Y. Purification and characterization of a tyrosinase inhibitor from camellia pollen. J. Funct. Foods., 2016, vol. 27, pp. 140-149.