СИНТЕЗ ТА КАТАЛІТИЧНА АКТИВНІСТЬ ДИСПЕРСНИХ ОКСИДІВ МАНГАНУ(ІV) В РЕАКЦІЇ РОЗКЛАДАННЯ ОЗОНУ

T. L. Rakitskaya, A. S. Truba, A. V. Nagaevs’ka

Анотація


У роботі досліджено вплив способу отримання діоксиду мангану на його склад та каталітичну активність в реакції розкладання озону. Методом рентгенофазового аналізу встановлено, що зразки IS-Mn(1), IS-Mn(2) і ІІS-Mn напіваморфні, а зразок IІІS-Mn – кристалічний та відповідає фазі криптомелану KMn8O16. Каталітична активність оксидних форм мангану в реакції розкладання озону визначається фазовим складом і збільшується в ряду: IS-Mn(1) < IIS-Mn < IIIS-Mn.

Ключові слова


оксид мангану(IV), рентгенофазовий аналіз, розкладання озону

Повний текст:

PDF

Посилання


Rakitskaya T. L., Bandurko A. Yu., Еnnan А. А., Paina V. Y., Litvinskaya V.V. Low-temperature catalytic decomposition ofozone microconcentrations by carbon fibrous materials. Adv. Environ. Res., 2000, vol. 3, no 4, pp. 472-487.

Rakitskaya T.L., Bandurko O.Yu., Raskola L.A. Katalizatoryi nizkotemperaturnogo razlozheniya ozona: sostoyanie i perspektivyi razrabotki. Vіsn. Odes. nac. unіv., Hіm., 2002, vol. 6, no 7-8, pp. 13-22. (in Russian)

Rakitskaya T.L., Truba A.S., Raskola L.A., Ennan A.A. Modifitsirovannyy khloridom margantsa(II) prirodnyy klinoptilolit v reaktsii razlozheniya ozona. Himiya, fizika ta tekhnologiya poverkhni, 2013, vol. 4, no 3, pp. 297-304. (in Russian)

Rakytskaya T.L., Khytrych V.F., Raskola L.A., Chernovolova Z.V. Kinetyka razlozhenyya ozona melkodyspersnym dioksydom marhantsa. Vіsn. Odes. nac. unіv., Hіm., 2005, vol. 10, no 1, pp. 42-47. (in Russian)

Rakytskaya T.L., Khitrych V.F., Raskola L.A., Makordey F.V., Syrovetnyk O.V. Razlozhenye mykrokontsentratsyy ozona melkodyspersnym MnO2-katalyzatorom. Vіsn. Odes. nac. unіv., Hіm., 2004, vol. 9, no 6-7, pp. 117-124. (in Russian)

Feng Q., Kanoh H., Ooi K. Manganese oxide porous crystals. J. Mater. Chem., 1999, vol. 9, pp. 319-333. https://doi.org/10.1039/A805369C

Devaraj S., Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C, 2008, vol. 112, no 11, pp. 4406-4417. https://doi.org/10.1021/jp7108785

Zhang J., Li Y., Wang L., Zhang C., He H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol, 2015, no 5, pp. 2305-2313. https://doi.org/10.1039/c4cy01461h

Zhao B., Ran R., Wu X., Weng D. Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts. Appl. Catal. A: General, 2016, vol. 514, pp. 24-34. https://doi.org/10.1016/j.apcata.2016.01.005

Long J.W., Wallace J.M., Peterson G.W., Huynh K. Manganese Oxide nanoarchitectures as broad-spectrum sorbents for toxic gases. Appl. Mater, 2016, vol.8, no 2, pp. 1184-1193. https://doi.org/10.1021/acsami.5b09508

Jia J., Zhang P., Chen L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B: Environ., 2016, vol. 189, pp. 210-218. https://doi.org/10.1016/j.apcatb.2016.02.055

Tang W.-X., Liu H.-D., Wu X.-F., Chen Y.-F. Higher oxidation state responsible for ozone decomposition at room temperature over manganese and cobalt oxides: Effect of calcination temperature. Ozone: Sci. Eng., 2015, vol. 36, no 5, pp. 502-512. https://doi.org/10.1080/01919512.2014.894454

Gopi T., Swetha G., Shekar S. C., Ramakrishna C., Sain B., Krishna R., Rao P.V.L. Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts. Catal. Commun., 2017, vol. 17, pp. 1566-7367. https://doi.org/10.1016/j.catcom.2017.01.002

Wang C., Ma J. , Liu F., He H., Zhang R. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. J. Phys. Chem. C, 2015, vol. 119, pp. 23119-23126. https://doi.org/10.1021/acs.jpcc.5b08095

Liu X., Chen C., Zhao Y., Jia B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomaterials, 2013, vol. 2013, ID 736375. https://doi.org/10.1155/2013/736375

Sui N., Duan Y., Jiao X., Chen D. Large-scale preparation and catalytic properties of one-dimensional α/β- MnO2 nanostructures. J. Phys. Chem., 2009, vol. 113, pp. 8560-8565. https://doi.org/10.1021/jp810452k

Khana Y., Durrani S.-K., Mehmood M., Khan M.-R. Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires. J. Mater. Res., 2011, vol. 26, no 17, pp. 2268-2275. https://doi.org/10.1557/jmr.2011.138

Wang X., Li Y. Selected-сontrol hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc., 2002, vol. 124, no 12, pp. 2880-2881. https://doi.org/10.1021/ja0177105

Chen S., J. Zhu, Q. Han, Z. Zheng, Yang Y., Wang X. Shape-Controlled Synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Crystal Growth Design., 2009, vol. 9, no 10, pp. 4356-4361. https://doi.org/10.1021/cg900223f

Kanungo S.B. Physicochemical properties of MnO2 and MnO2-CuO and the relationship with the catalytic activity for H2O2 decomposition and CO oxidation. J. Catal., 1979, vol. 58, pp. 419-435.

Li B., Rong G., Xie Y., Huang L., Feng C. Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem., 2006, vol. 45, no 16, pp. 6404-6410. https://doi.org/10.1021/ic0606274

Zhang X., Yu P., Wang D. , Ma Y. Controllable synthesis of α-MnO2 nanostructures and phase transformation to β-MnO2 microcrystals by hydrothermal crystallization. J. Nanosci. and Nanotech., 2010, vol. 10, pp. 898-904. https://doi.org/10.1166/jnn.2010.1893

Chu X., Zhang H. Catalytic decomposition of formaldehyde on nanometer manganese dioxide. Modern Appl. Sci., 2009, vol. 3, no 4, pp. 177-181. https://doi.org/10.5539/mas.v3n4p177

Lan L., Gu G., Li Q., Zhang H., Xu K., Liu B., Liu B. Manganese oxide nanostructures: low-temperature selective synthesis and thermal conversion. RSC Adv., 2015, vol. 5, pp. 25250-25257. https://doi.org/10.1039/C5RA02241J

Huang X., Li D., Yue H., Attia A.,YangY. Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization. Nanotechnology, 2008, vol. 19, pp. 225606-225613. https://doi.org/10.1088/0957-4484/19/22/225606

Klyuchnykov N.H. Praktykum po neorhanycheskomu syntezu. M.: Prosveshchenye, 1979. 271 p. (in Russian)

Hodunov E.B. Vlyyanye stekhyometrycheskoho sostava oksydov marhantsa na skorostʹ vzaymodeystvyya s sernokyslymy rastvoramy, soderzhashchymy shchavelevuyu y lymonnuyu kysloty: dys. … kandydata khym.nauk: 02.00.04 «Fyzycheskaya khymyya», Moscow, 2014, 236 p. (in Russian)

Starostyn A.H., Kuzyna E.O., Fedotova O.A. Prohnozyrovanye produktov razlozhenyya nytrata marhantsa, Ynzh. vestnyk Dona., 2014, no 4. (URL: ivdon.ru/ru/magazine/archive/n4y2014/2581) (in Russian)

Wei M., Konishi Y., Zhou H., Sugihara H., Arakawa H. Synthesis of single-crystal manganese dioxide nanowiresby a softchemical process. Nanotechnology, 2005, vol. 16, pp. 245-249. https://doi.org/10.1088/0957-4484/16/2/011

Ferreira O.P. , Otubo L., Romano R., Alves O.L. One-Dimensional Nanostructures from Layered Manganese Oxide. Crystal Growth & Design, 2006, vol. 6, no 2, pp. 601-606. https://doi.org/10.1021/cg0503503

Shen X.-F., Ding Y.-S., Liu J., Cai J., Laubernds K., Zerger R. P., Vasiliev A., Aindow M., Suib S. L. Controlof Nanometer-Scale Tunnel Sizes of Porous Manganese Oxide Octahedral Molecular Sieve Nanomaterials. Adv. Mater., 2005, vol. 17, no 7, pp. 805-809. https://doi.org/10.1002/adma.200401225


Пристатейна бібліографія ГОСТ


1. Rakitskaya T.L., Bandurko A.Yu., Еnnan А.А., Paina V.Ya., Litvinskaya V.V. Low-temperature catalytic decomposition of ozone microconcentrations by carbon fibrous materials // Adv. Environ. Res. – 2000. – Vol. 3, N 4. – P. 472-487. https://doi.org/10.1016/s1387-1811(00)00358-9

2. Ракитская Т. Л., Бандурко А.Ю., Раскола Л.А. Катализаторы низкотемпературного разложения озона: состояние и перспективы разработки // Вісн. Одеськ. нац. ун-ту. Хімія. – 2002. – Т. 6, № 7-8. – С.13-22.

3. Ракитська Т.Л., Труба А.С., Раскола Л.А., Еннан А.А. Модифицированный хлоридом марганца(ІІ) природный клиноптилолит в реакции разложения озона // Хімія, фізика та технологія поверхні. – 2013. –Т. 4, № 3. – С. 297-304.

4. Ракитская Т.Л., Хитрич В.Ф., Раскола Л.А., Черноволова З.В. Кинетика разложения озона мелкодисперсным диоксидом марганца // Вісн. Одес. ун-ту. Хімія. – 2005. – Т. 10, № 1. – C. 42-47.

5. Ракитская Т.Л., Хитрич В.Ф., Раскола Л.А., Макордей Ф.В., Сироветник О.В. Разложение микроконцентраций озона мелкодисперсным MnO2-катализатором // Вісн. Одеськ. нац. ун-ту. Хімія. – 2004. – Т. 9, вип.6-7. – С.117-124.

6. Feng Q., Kanoh H., Ooi K. Manganese oxide porous crystals // J. Mater. Chem. – 1999. – Vol. 9. – P. 319-333. https://doi.org/10.1039/A805369C

7. Devaraj S., Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties // J. Phys. Chem. C. – 2008. – Vol. 112, N 11. – P. 4406-4417. https://doi.org/10.1021/jp7108785

8. Zhang J., Li Y., Wang L., Zhang C., He H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures // Catal. Sci. Technol. – 2015. – N 5. – P. 2305-2313. https://doi.org/10.1039/ C4CY01461H

9. Zhao B., Ran R., Wu X., Weng D. Phase structures, morphologies, and NO catalytic oxidation activities of singlephase MnO2 catalysts // Appl. Catal. A: General. – 2016. – Vol. 514. – P. 24–34. https://doi.org/10.1016/j.apcata.2016.01.005

10. Long J.W., Wallace J.M., Peterson G.W., Huynh K. Manganese Oxide Nanoarchitectures as Broad-Spectrum Sorbentsfor Toxic Gases // Appl. Mater. – 2016. – Vol. 8, N 2. – P. 1184-1193. https://doi.org/10.1021/ acsami.5b09508

11. Jia J., Zhang P., Chen L. Catalytic decomposition of gaseous ozone over manganese dioxideswith differentcrystal structures // Appl. Catal. B: Environ. – 2016. – Vol. 189. – P. 210-218. https://doi.org/10.1016/j.apcatb.2016.02.055

12. Tang W.-X., Liu H.-D., Wu X.-F., Chen Y.-F. Higher Oxidation State Responsible for Ozone Decomposition at Room Temperature over Manganese and Cobalt Oxides: Effect of Calcination Temperature // Ozone: Sci. &Eng. – 2015. – Vol. 36, N 5. – P. 502-512. https://doi.org/10.1080/01919512.2014.894454

13. Gopi T., Swetha G., Shekar S. C., Ramakrishna C., Saini B., Krishna R., Rao P.V.L. Catalytic decompositionof ozone on nanostructured potassium and proton containing δ-MnO2 catalysts // Catal. Commun. – 2017. –Vol. 17. – P. 1566-7367. https://doi.org/10.1016/j.catcom.2017.01.002

14. Wang C., Ma J. , Liu F., He H., Zhang R. The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts // J. Phys. Chem. C. – 2015. – Vol. 119. – P. 23119-23126. https://doi.org/10.1021/acs.jpcc.5b08095

15. Liu X., Chen C., Zhao Y., Jia B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries // J. Nanomaterials. – 2013. – Vol. 2013. – ID 736375. https://doi. org/10.1155/2013/736375

16. Sui N., Duan Y., Jiao X., Chen D. Large-scale preparation and catalytic properties of one-dimensional α/β-MnO2 nanostructures // J. Phys. Chem. – 2009. – Vol. 113. – P. 8560-8565. https://doi.org/10.1021/jp810452k

17. Khana Y., Durrani S.-K., Mehmood M., Khan M.-R. Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires // J. Mater. Res. – 2011. – Vol. 26, N 17. – P. 2268-2275. https://doi.org/10.1557/jmr.2011.138

18. Wang X., Li Y. Selected-сontrol hydrothermal synthesis of α- and β-MnO2 single crystal nanowires // J. Am.Chem. Soc. – 2002. – Vol. 124, N 12. – P. 2880-2881. https://doi.org/10.1021/ja0177105

19. Chen S., J. Zhu, Q. Han, Z. Zheng, Yang Y., Wang X. Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties // Crystal Growth & Design. –2009. – Vol. 9, N 10. – P. 4356-4361. https://doi.org/10.1021/cg900223f

20. Kanungo S.B. Physicochemical properties of MnO2 and MnO2-CuO and The Relationship wish the Catalytic Activity for H2O2 Decomposition and CO Oxidation // J. Catal. – 1979. – Vol. 58. – P. 419-435.

21. Li B., Rong G., Xie Y., Huang L., Feng C. Low-Temperature Synthesis of α-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries // Inorg. Chem. – 2006. – Vol. 45, N 16. – P. 6404-6410. https://doi.org/10.1021/ic0606274

22. Zhang X., Yu P., Wang D. , Ma Y. Controllable Synthesis of α-MnO2 Nanostructures and Phase Transformation to β-MnO2 Microcrystals by Hydrothermal Crystallization // J. Nanosci. and Nanotech. – 2010. – Vol. 10. –P. 898-904. https://doi.org/10.1166/jnn.2010.1893

23. Chu X., Zhang H. Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide // Modern Appl. Sci. – 2009. – Vol. 3, N 4. – P. 177-181. https://doi.org/10.5539/mas.v3n4p177

24. Lan L., Gu G., Li Q., Zhang H., Xu K., Liu Bо, Liu B. Manganese oxide nanostructures: low-temperature selective synthesis and thermal conversion // RSC Adv. – 2015. – Vol. 5. – P. 25250-25257. https://doi.org/10.1039/C5RA02241J

25. Huang X., Li D., Yue H., Attia A., Yang Y. Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization // Nanotechnology – 2008. – Vol. 19. – P. 225606-225613. https://doi.org/10.1088/0957-4484/19/22/225606

26. Ключников Н.Г. Практикум по неорганическому синтезу. – М.: Просвещение, 1979. – 271 с.

27. Годунов Е.Б. Влияние стехиометрического состава оксидов марганца на скорость взаимодействия с сернокислыми растворами, содержащими щавелевую и лимонную кислоты: дис. … кандидата хим. наук: 02.00.04 «Физическая химия». – М., 2014. – 236 с.

28. Старостин А.Г., Кузина Е.О., Федотова О.А. Прогнозирование продуктов разложения нитрата марганца // Инж. вестник Дона. – 2014. – № 4. (URL: ivdon.ru/ru/magazine/archive/n4y2014/2581)

29. Wei M., Konishi Y., Zhou H., Sugihara H., Arakawa H. Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process // Nanotechnology. – 2005. – Vol. 16. – P. 245-249. https://doi.org/10.1088/0957-4484/16/2/011

30. Ferreira O.P. , Otubo L., Romano R., Alves O.L. One-Dimensional Nanostructures from Layered Manganese Oxide // Crystal Growth & Design. – 2006. – Vol. 6, N 2. – P. 601-606. https://doi.org/10.1021/cg0503503

31. Shen X.-F., Ding Y.-S., Liu J., Cai J., Laubernds K., Zerger R. P., Vasiliev A., Aindow M., Suib S. L. Control of Nanometer-Scale Tunnel Sizes of Porous Manganese Oxide Octahedral Molecular Sieve Nanomaterials // Adv.Mater. – 2005. – Vol. 17, N 7. – P. 805-809. https://doi.org/10.1002/adma.200401225





DOI: https://doi.org/10.18524/2304-0947.2017.4(64).115916

Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution-ShareAlike 4.0 International License.