МОЛЕКУЛЯРНІ КОМПЛЕКСИ ОКСИДУ СІРКИ(IV) З N,O-ВМІСНИМИ ОРГАНІЧНИМИ ОСНОВАМИ (ОГЛЯД)
DOI:
https://doi.org/10.18524/2304-0947.2016.3(59).79510Ключові слова:
оксид сірки (IV), N, O-вмісні органічні основи, комплекси з переносом заряду, ван-дер-ваальсові комплексиАнотація
Систематизовано та узагальнено літературні дані щодо синтезу, стехіометрії, будови та відносної стійкості молекулярних комплексів оксиду сірки (IV) з N,O-вмісними органічними основами. Особливу увагу приділено механізмам утворення комплексів з переносом заряду, в яких реалізується S←N и S←O зв'язування, а також ван-дер-ваальсових комплексів. Відзначено кореляції між електронними, спектральними параметрами, будовою, відносною стійкістю і іншими характеристиками утворених сполук.Посилання
Wang X.-B., Du J.-B., Cui H. Sulfur dioxide, a double-faced molecule in mammals. Life Sci., 2014, vol. 98, no 2, pp. 63-67. http://dx.doi.org/10.1016/j.lfs.2013.12.027
Shallcross D.E. Dirty air.Educ. Chem., 2006, vol. 43, no5, pp. 131-135.
Gelmboldt V.O., Khoma R.E., Ennan A.A. Organic bases in the processes of catching and utilization of sulfur oxide (IV) (review). Jenergotehnologii i resursosberezhenie, 2008, no 4, pp. 51–58. (in Russian)
Huang K., Lu J.-F., Wu Y.-T., Hu X.-B., Zhang Z.-B. Absorption of SO2in aqueous solutions of mixed hy-droxylammonium dicarboxylate ionic liquids. Chem. Eng. J., 2013, vol. 215–216, pp. 36–44. http://dx.doi.org/10.1016/j.cej.2012.10.091
Hong S.Y., Kim H., Kim Y.J., Jeong J., Cheong M., Lee H., Kim H.S., Lee J.S. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2absorbents. J. Hazard. Mater., 2014, vol. 264, pp. 136–143. http://dx.doi.org/10.1016/j.jhazmat.2013.11.026
Ennan A.A., Kats B.M. Silicon Tetrafluoride Adducts. Russ. Chem. Rev., 1974, vol. 43, no 7, pp. 539–550. http://dx.doi.org/10.1070/RC1974v043n07ABEH001830
Ennan А.А., Gelmboldt V.O., Gavrilova L.А. Stereohimija i reakcionnaja sposobnost’ ftorokompleksov kremnija. Мoscow, VINITI, 1989, 100 p. (in Russian)
Ennan А.А., Gelmboldt V.O. Tetraftorid kremnija v reakcijah s organicheskimi osnovanijami. Odessa, Ecology, 2005, 160 p. (in Russian)
Gelmboldt V.O. «Onium» fluorosilicates: structures, properties, practical applications. Odessa, Astroprint, 2012, 160 p. (in Russian)
Young N.A. Main Group Coordination Chemistry at Low Temperatures: A Review of Matrix Isolated Group 12 to Group 18 Complexes. Coord. Chem. Rev., 2013, vol. 257, no 5-6, pp. 956−1010. http://dx.doi.org/10.1016/j.ccr.2012.10.013
Mews R., Lork E., Watson P.G., Gortler B. Coordination chemistry in and of sulfur dioxide.Coord. Chem. Rev., 2000, vol. 197, pp. 277-320. http://dx.doi.org/10.1016/S0010-8545(99)00191-5
Emmett E.J., Willis M.C. The development and application of sulfur dioxide surrogates in synthetic organic chemistry. Asian J. Org. Chem., 2015, vol. 4, no 7, pp. 602-611. http://dx.doi.org/10.1002/ajoc.201500103
Nikitin V.I. On interaction of nitrogen-containing organic bases with sulfur dioxide. Vіsn. Odes. nac. unіv., Hіm., 2003, vol. 8, no 4, pp. 200-211. (in Russian)
Khoma R.E., Nikitin V.I., Sokhranenko G.P., Gavrilenko M.I. SO2 acid-base interaction with aqueous solutions of nitrogen-containing compounds (review). Vіsn. Odes. nac. unіv., Hіm., 2002, vol. 6, no 8, pp. 176-193. (in Ukrainian)
Bae S.C., Son H.S., Kim G.H., Ku J.K. Vibronic Relaxation among the Clements Bands of SO2from the E-Band Excitation. J. Phys. Chem. A., 1999, vol. 1-3, pp. 7432-7436. http://dx.doi.org/10.1021/jp990390f
Guantes R., Farantos S.C. High order finite difference methods algorithms far solving Scrodinger equation in molecular dynamics. II Periodic variables. J. Chem. Phys., 2000, vol. 113, no 23, pp. 10429–10437. http://dx.doi.org/10.1063/1.1324004
Prosmiti R., Farantos S.C., Guo H. Assigning the transition from normal to local vibrotional mode in SO2 by periodic orbits. Chem. Phys. Lett., 2000, no 311, pp. 241–247. http://dx.doi.org/10.1016/s0009-2614(99)00850-7
Cooper G., Zarate E.B., Jones R.K., Brion C.E. Absolute oscillator strengths for photoabsorption, photoioniza-tion and ionic photofragmentation of sulphur dioxide. I. The valence shell. Chem. Phys., 1991, vol. 150, no 2, pp. 237-250. http://dx.doi.org/10.1016/0301-0104(91)80132-2
Singh P.J., Shastri A., D’Souza R., Bhaskara Rao S.V.N., Jagatap B.N. VUV photoabsorption spectroscopy of sulphur dioxide in the 1400-1600 Å region: Vibronic analysis of the E~X~system J. Quant. Spectrosc. Radiat. Transfer., 2012, vol. 113, no 4, pp. 267-278. http://dx.doi.org/10.1016/j.jqsrt.2011.11.007
Gillespie R.J., Hargittai I. The VSEPR Model of Molecular Geometry. Boston, Allyn&Bacon, 2012, 260 p.
Khoma R.E., Gavrilenko M.I., Nikitin V.I. Semiempirical Researches of Interaction of Sulfur Dioxide with Urea in Water by Monte-Carlo Method. Vіsn. Odes. nac. unіv., Hіm., 2004, vol. 9, no 2, pp. 28-45. (in Ukranian)
Li S., Kurtz H., Korambath P., Li Y.-S. Infrared spectra, photochemistry, and ab initio calculations of matrix isolated methanethiol/sulfur dioxide complex. J. Mol. Struct., 2000, vol. 550-551, pp. 235–244. http://dx.doi.org/10.1016/S0022-2860(00)00520-2
Risberg E.D., Eriksson L., Mink J., Pettersson L.G.M., Skripkin M.Yu., Sandström M. Sulfur X-ray Absorp-tion and Vibrational Spectroscopic Study of Sulfur Dioxide, Sulfite, and Sulfonate Solutions and of the Substi-tuted Sulfonate Ions X3CSO3-(X = H, Cl, F). Inorg. Chem., 2007, vol. 46, no 20, pp. 8332–8348. http://dx.doi.org/10.1021/ic062440i
Magnusson E. Hypercoordinate molecules of second-row elements: d functions or d orbitals?J. Am. Chem. Soc., 1990, vol. 112, no 22, pp. 7940–7951. http://dx.doi.org/10.1021/ja00178a014
Schenk W.A. Sulfur Oxides as Ligands in Coordination Compounds. Angew. Chem. Int. Edn. Engl. 1987, vol. 26, pp. 98-109. http://dx.doi.org/10.1002/chin.198724352
Pearson R.G. Hard and soft acids and bases – the evolution of a chemical concept. Coord. Chem. Rev., 1990, vol. 100, pp. 403-425. http://dx.doi.org/10.1016/0010-8545(90)85016-L
Larson J.W., McMahon T.B. Fluoride and chloride affinities of main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of Lewis acidities from ion cyclotron resonance halide-exchange equilibria. J. Am. Chem. Soc., 1985, vol. 107, no 4, pp. 766-773. http://dx.doi.org/10.1002/chin.198527075
Brinkmann N.R., Tschumper G.S., Schaefer III H.F. Electron affinities of the oxides of aluminum, silicon, phosphorus, sulfur, and chlorine. J. Chem. Phys., 1999, vol. 110, no 13, pp. 6240-6245. http://dx.doi.org/10.1063/1.478528
Laurence C., Gal J.-F. Lewis Basicity and Affinity Scales: Data and Measurement. John Wiley & Sons Ltd, 2010, 476 p. http://dx.doi.org/10.1002/9780470681909
Vogel G.C., Drago R.S. The ECW Model. J. Chem. Educ., 1996, vol. 73, no 8, pp. 701-707. http://dx.doi.org/10.1021/ed073p701
Adams W.A., Kruus P., Patraboy T.J. The system sulfur dioxide – N-methyl-2-pyrrolidinone. Can. J. Chem./Rev. Can. Chim., 1983, vol. 61, no 1, pp. 37-44. http://dx.doi.org/10.1139/v83-007
Hartel G.H. Low-Volatility Polar Organic Solvents for Sulfur Dioxide, Hydrogen Sulfide, and Carbonyl Sulfide. J. Chem. Eng. Data., 1985, vol. 30, no 1, pp. 57–61. http://dx.doi.org/10.1021/je00039a019
Gill J.B., Goodall D.C., Jeffreys B., Gans P. Reactions in mixed non-aqueous solutions containing sulphur diox-ide. Part 7. A Raman spectroscopic study of adduct formation between sulphur dioxide and dimethyl sulphoxide. J. Chem. Soc., Dalton Trans., 1986, no 12, pp. 2597–2602. http://dx.doi.org/10.1039/dt9860002597
Gill J.B., Goodall D.C., Jeffreys B. Reactions in mixed non-aqueous solutions containing sulphur dioxide. Part 8. Phase studies of sulphur dioxide–dimethyl sulphoxide and sulphur dioxide–dimethylformamide mixtures. J. Chem. Soc., Dalton Trans., 1986, no 12, pp. 2603–2605. http://dx.doi.org/10.1039/dt9860002603
Faria D.L.A., SantosP.S. 13C NMR Spectra of some Sulphur Dioxide-Aromatic Amine Complexes. Magn. Reson. Chem., 1987, vol. 25, no 7, pp. 592–593. http://dx.doi.org/10.1002/mrc.1260250708
Demyanovich R.J., Lynn S. Vapor-Liquid Equilibria of Sulfur Dioxide in Polar Organic Solvents. Ind. Eng. Chem. Res., 1987, vol. 26, no 3, pp. 548–555. http://dx.doi.org/10.1021/ie00063a022
Sciamanna S.F., Lynn S. Solubility of Hydrogen Sulfide, Sulfur dioxide, Carbon Dioxide, and n-Butane in Poly(glycol ethers). Ind. Eng. Chem. Res., 1988, vol. 27, pp. 492-499.
Dam M.H.H., Lamine A.S., Roizard D., Lochon P., Roizard C. Selective Sulfur Dioxide Removal using Organic solvents. Ind. Eng. Chem Res., 1997, vol. 36, no 11, pp. 4628–4637. http://dx.doi.org/10.1021/ie970111f
Kermadec R., Lapoicque F., Roizard D., Roizard C. Characterization of the SO2-N-Formylmorpholine Com-plex: Application to a Regenerative Process for Waste Gas Scrubbing. Ind. Eng. Chem. Res., 2002, vol. 41, no 2, pp. 153-163. http://dx.doi.org/10.1021/ie010173c
Nagel D., Kermadec R., Lintz H.G, Roizard C., Lapoicque F. Absorption of sulfur dioxide in N-formylmorpho-line: investigations of the kinetics of the liquid phase reaction. Chem. Eng. Sci., 2002, vol. 57, no 22-23, pp. 4883-4893. http://dx.doi.org/10.1016/s0009-2509(02)00283-x
Heldebrant D.J., Yonker C.R., Jessop P.G., Phan L. Reversible Uptake of COS, CS2, and SO2: Ionic Liquids with OAlkylxanthate, O-Alkylthiocarbonyl, and O-Alkylsulfite Anions. Chem. Eur. J., 2009, vol. 15, no 31, pp. 7619-7627. http://dx.doi.org/10.1002/chem.200802602.
Heldebrant D.J., Koech P.K., Yonker C.R. A reversible zwitterionic SO2-binding organic liquid. Energy Envi-ron. Sci., 2010, vol. 3, no 1, pp. 111-113. http://dx.doi.org/10.1039/B916550A
Ando R.A., Matazo D.R.C., Santos P.S. Detailed analysis of the charge transfer complex N,N-dimethylaniline–SO2 by Raman spectroscopy and density functional theory calculations. J. Raman Spectrosc., 2010, vol. 41, no 7, pp. 771–775. http://dx.doi.org/10.1002/jrs.2514
Nagai T., Katayama K., Tokura N. Electron transfer from amines to liquid sulfur dioxide. Chem. Lett., 1973, vol. 2, no 8, pp. 919-922. http://doi.org/10.1246/cl.1973.919
Wu K.T., Yencha A.J. Rate processes and nuclear magnetic resonance spectra of amine•SO2complexes + H2O in liquid SO2. Can. J. Chem., 1981, vol. 59, no 1, pp. 8-13. http://dx.doi.org/10.1139/v81-002
Ramadan A.M. Sintez i fiziko-himicheskie issledovanija produktov vzaimodejstvija oksida sery (IV) s aro-maticheskimi i geterociklicheskimi azotsoderzhashhimi osnovanijami. Diss. Candidate of Chemical Sciences, Odessa, 1994, 121 p.
Kurando S.V. Koordinacionnye soedinenija oksidov sery (IV) i (VI) s azotsoderzhashhimi organicheskimi os-novanijami. Diss. Candidate of Chemical Sciences, Odessa, 1995, 130 p.
Kurando S.V., Nikitin V.I. The adducts of sulfur dioxide with alkylamines. Vіsn. Odes. nac. unіv., Hіm., 2002, vol. 6, no 7, pp. 94–99.
Ennan А.А., Nikitin V.I., Gudimovich T.F., Berezina L.P., Tikhonenko L.M. Kompleksoobrazovanie oksida sery (IV) s p, o-toluidinom. Zhurn. neorgan. himii., 1989, vol. 34, no 3, pp. 783–786. (in Russian)
Mokhamed R.A., Nikitin V.I., Karpinchik V.A. Issledovanie vzaimodejstvija oksida sery (IV) s piridinom i izomernymi pikolinami. Zhurn. neorgan. himii., 1993, vol. 38, no 4, pp. 621–624. (in Russian)
Nikitin V.I., Sokhranenko G.P., Karpinchik V.A., Mokhamed R.A. Kompleksoobrazovanie ok-sida sery (IV) c 4,4’-dipiridilom. Izv. VUZov. Khimija i khim. tehnol., 1994, vol. 37, no 1, pp. 30–34. (in Russian)
Berezіna L.P., Nіkіtіn V.І., Sokhranenko G.P., Samojlenko G.V. Vpliv etilenglіkolju і sorbіtu na fіziko-hіmіchnі vlastivostі etanolamіnіv. Vіsn. Odes. nac. unіv., Hіm., 2000, vol. 5, no 2, pp. 3–8. (in Russian)
Nіkіtіn V.І., Khoma R.Е, Gavrilenko M.I. Potentiometric studies on sulfur dioxide sorption by aqueous carb-amide solution. Izv. VUZov. Khimija i khim. tehnol., 2000, vol. 43, no 2, pp. 14–16. (in Russian)
Khoma R.Е, Nіkіtіn V.І., Gavrilenko M.I. pH-metric investigation of sulfur dioxide sorption by 0.1 M urea solu-tion. Izv. VUZov. Khimija i khim. tehnol., 2001, vol. 44, no 6, pp. 42–44. (in Russian)
Kurando S.V., Nikitin V.I. Synthesis and physico-chemical studies on the products of the interaction of sulfur dioxide with benzylamines. Vіsn. Odes. nac. unіv., Hіm., 2002, vol. 6, no 6, pp. 164–168. (in Ukranian)
Khoma R.E., Nikitin V.I., Gavrilenko M.I. On reaction of sulfur dioxide with aqueous solutions of carbamide. Russ. J. Appl. Chem., 2003, vol. 76, no 4, pp. 513-517.
Khoma R.E., Gavrilenko M.I., Nikitin V.I. A study of complexation in the system constituted by water, carb-amide, and sulfur dioxide at 293 K. Russ. J. Appl. Chem., 2004, vol. 77, no 8, pp. 1249-1254.
Khoma R.E., Gavrilenko M.I., Nikitin V.I. Interaction of Sulfur Dioxide with Aqueous Solutions of Amides. Russ. J. Gen. Chem., 2005, vol. 75, no 5, pp. 727-733. http://dx.doi.org/10.1007/s11176-005-0308-9.
Dehghani H., Fathi F. Molecular complexation of meso-tetraphenylporphyrins with SO2. Dyes Pigments., 2008, vol. 77, no 2, pp. 323–326. http://dx.doi.org/10.1016/j.dyepig.2007.05.017
Basu R.K., Dutta B.K. Kinetics of absorption of sulfur dioxide in dimethylaniline solution. Can. J. Chem. Eng., 1987, vol. 65, no 1, pp. 27-35. http://dx.doi.org/10.1002/cjce.5450650106
Wong M.W., Wiberg K.B. Srtuctures, Bonding, and Absorption Spectra of Amine – Sulfur Dioxide Charge-Transfer Complexes. J. Am. Chem. Soc., 1992, vol. 114, pp. 7527-7535. http://dx.doi.org/10.1021/ja00045a028
Eigner A.A., Wrass J.P., Smith E.L., Knutson C.C., Phillips J.A. Structural properties of CH3CN-SO2 in the gas phase and condensed-phase media via density functional theory and infrared spectroscopy. J. Mol. Struct., 2009, vol. 919, no 1-3, pp. 312-320. http://dx.doi.org/10.1016/j.molstruc.2008.09.024
Ito F., Hirabayashi S. Infrared spectroscopy of SO2clusters in rare gas matrices revisited: Assignment of species in Ar matrix. Chem. Phys., 2009, vol. 358, no 3, pp. 209–218. http://dx.doi.org/10.1016/j.chemphys.2009.02.007
Phillips J.A., Britton D., Leopold K.R. Gas-solid structure differences in the donor-acceptor complex (CH3)2HN−SO2. J. Chem. Crystallogr., 1996, vol. 26, no 8, pp. 533-538. http://dx.doi.org/10.1007/BF01668411
LaBarge M.S., Matos J., Hillig K.W., Kuczkowski R.L. Microwave Spectrum and Structure of the Trimethyl-amine – Sulfur Dioxide Charge –Transfer Complex. J. Am. Chem. Soc., 1987, vol. 109, pp. 7222-7223. http://dx.doi.org/10.1021/ja00257a070
Labarge M.S., Oh J.-J., Hillig II K.W., Kuczkowski R.L. The benzene-SO2and pyridine-SO2complexes. Chem. Phys. Lett., 1989, vol. 159, no 5–6, pp. 559-562. http://dx.doi.org/10.1016/0009-2614(89)87532-3
Oh J.J., HilligII K.W., Kuczkowski R.L. Microwave spectrum and structure of the pyridine-sulfur dioxide com-plex. J. Am. Chem. Soc., 1991, vol. 113, no 20, pp. 7480–7484. http://dx.doi.org/10.1021/ja00020a004
Oh J.J., HilligII K.W., Kuczkowski R.L. Structure of the Dimethylamine-Sulfur Dioxide Complex. J. Phys. Chem., 1991, vol. 95, no 19, pp. 7211-7216. http://dx.doi.org/10.1021/j100172a022
Structure and Dynamics of Solutions.Ed. H. Ohtaki,H. Yamatera. Stud. Phys. Theor. Chem., 1992, vol. 79, pp. 16. http://dx.doi.org/10.1016/c2009-0-10162-9
Chemical Processes with Participation of Biological and Related Compounds.Biophysical and Chemical As-pects of Porphyrins, Pigments, Drugs, Biodegradable Polymers and Nanofibers. Ed. T.N. Lomova, G.E. Zaikov. Leiden-Boston, Netherland, Brill, 2008, pp. 194.
Nikitin V.I., Karpinchik V.A., Mokhamed R.A., Gelmboldt V.O. Synthesis, IR spectra, and thermochemi-cal properties of sulfur(IV) oxide adducts with arylamines. Zhurn. Neorgan. Khim., 1996, vol. 41, no 2, pp. 283–286. (in Russian)
Sohranenko G.P., Nikitin V.I., Karpinchik V.A., Mohamed Ramadan Issledovanie processov vzaimodejst-vija oksida sery (IV) s aromaticheskimi aminami. Izv. VUZov. Khimija i khim. tehnol., 1994, vol. 37, no 2, pp. 20-24. (in Russian)
Pradeep T., Sreekanth C.S., Hegde M.S., Rao C.N.R. Experimental electronic structures of sulfur dioxide com-plexes: an electron spectroscopic study. J. Am. Chem. Soc., 1989, vol. 111, no 14, pp. 5058–5063. http://dx.doi.org/10.1021/ja00196a006
Kanamueller J.M. Sulfur dioxide adducts of some disubstituted hydrazines. J. Inorg. Nucl. Chem., 1971, vol. 33, no 12, pp. 4051-4055. http://dx.doi.org/10.1016/0022-1902(71)80503-1
Keller J.W. Sulfur Dioxide−Pyridine Dimer. FTIR and Theoretical Evidence for a Low-Symmetry Structure. J. Phys. Chem. A., 2015, vol. 119, no 41, pp. 10390–10398. http://dx.doi.org/10.1021/acs.jpca.5b06122
Maier N., Schiewe J., Matschiner H., Maschmeier C.-P., Boese R. Zur Struktur Von Sek. Amin-SO2-komplexen. Phosphorus Sulfur., 1994, vol. 91, no 1-4, pp. 179-188. http://dx.doi.org/10.1080/10426509408021944
Shannon M.S., Irvin A.C., Liu H., Moon J.D., Hindman M.S., Turner C.H., Bara J.E. Chemical and Physical Absorption of SO2
by N-Functionalized Imidazoles: Experimental Results and Molecular-level Insight. Ind. Eng. Chem. Res., 2015, vol. 54, no 1, pp. 462–471. http://dx.doi.org/10.1021/ie503752h
Sohranenko G.P., Nikitin V. I., Karpinchik V.A., Berezina L.P. O vzaimodejstvii v treh-komponentnyh sistemah SO2– p-anizidin – C2H5OH i SO2–5,6-benzohinolin–C2H5OH pri 200C. Izv. VUZov. Khimija i khim. tehnol., 1999, vol. 42, no 6, pp. 33–36. (in Russian)
Steudel R., Steudel Y. Charge-Transfer Complexes between the Sulfur Molecules SO2, S2O, S3, SONH, and SOCl2 and the Amine Donors NH3and NMe3– A Theoretical Study. Eur. J. Inorg. Chem., 2007, vol. 2007, no 27, pp. 4385–4392. http://dx.doi.org/10.1002/ejic.200700399
Sohranenko G.P., Berezina L.P., Karpinchik V.A., Nikitin V.I. Kompleksoobrazovanie oksida sery (IV) s geksa-metilendiaminom. Zhurn. Neorgan. Khim., 1992, vol. 37, no 10, pp. 2265-2268. (in Russian)
Martial L., Bischoff L. Stoichiometric Release of SO2 from Adducts: Application to the Direct Synthesis of Protected Dienes Source. Synlett., 2015, vol. 26, no 9, pp. 1225-1229. http://dx.doi.org/10.1055/s-0034-1380508
Childs J.D., Helm D.V., Christian S.D. Amine-sulfur dioxide complexes. Structure of N,N,N’,N’-tetrameth-yl-p-phenylenediamine-bis(sulfur dioxide). Inorg. Chem., 1975, vol. 14, no 6, pp. 1386–1390. http://dx.doi.org/10.1021/ic50148a036
Woolven H., González-Rodríguez C., Marco I., Thompson A.L., Willis M.C. DABCO-Bis(sulfur dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation. Org. Lett., 2011, vol. 13, no 18, pp. 4876-4878. http://dx.doi.org/10.1021/ol201957n
Huang K., Xia S., Zhang X.-M., Chen Y.-L., Wu Y.-T., Hu X.-B. Comparative Study of the Solubilities of SO2 in Five Low Volatile Organic Solvents (Sulfolane, Ethylene Glycol, Propylene Carbonate, N-Methylimidazole, and N-Methylpyrrolidone). J. Chem. Eng. Data., 2014, vol. 59, no 4, pp. 1202-1212. http://dx.doi.org/10.1021/je4007713
Sokhranenko G.P., Gavrilenko M.I. Generalization of the Results of Studies in Ternary Systems SO2– Am – Sol-vent. Vіsn. Odes. nac. unіv., Hіm., 2006, vol. 11, no 1, pp. 26-34. (in Russian)
Khoma R.E. Acid-base interaction of sulfur dioxide with amides aqueous solutions: thesis for the degree of Candidate of Chemical Sciences, Odessa, 2005, 21 p.
Khoma R.E., Gelmboldt V.О., Ennan А.А., Baumer V.N., Tsapko M.D.Interaction Products in the System Sulfur Dioxide – 2,2’-Bipyridine – Water. Van der Waals Clathrates. Russ. J. Gener. Chem., 2016, vol. 86, no 8, pp. 2237-2241. http://dx.doi.org/10.1134/S1070363216090097
Khoma R.Е., Shestaka А.А., Gelmboldt V.О. The interaction of sulphur dioxide with 2-imidazolidinone and biuret in aqueous solutions. Vіsn. Odes. nac. unіv., Hіm., 2009, vol.14, no 11, pp. 62-70. (in Russian)
Khoma R.Е. The composition and the relative stability of complexation products in «sulphur dioxide – amide – water» systems. Vіsn. Odes. nac. unіv., Hіm., 2012, vol. 17, no 2, pp. 49-57. http://dx.doi.org/10.18524/2304-0947.2012.2(42).31998 (in Russian)
Santos P.S., Lieder R. On the interaction of hexamethylenetetramine and sulfur dioxide // J. Mol. Struct. – 1986. – Vol. 144, No 1–2. – P. 39-45. http://dx.doi.org/10.1016/0022-2860(86)80165-X
Khoma R.Е., Shestaka А.А., Koroeva L.V., Ennan Gelmboldt V.О. Process for the preparation of aminometh-anesulfonic acid. Patent UA, no 59830, 2011. (in Ukrainian)
Khoma R.E., Shestaka A.A., Shishkin O.V., Baumer V.N., Brusilovskii Yu.E., Koroeva L.V., Ennan A.A., Gelm-bold V.O. Features of interaction in the sulfur(IV) oxide-hexamethylenetetramine-water system: A first example of identification of the product with a sulfur-carbon bond. Rus. J. Gen. Chem. – 2011. – Vol. 81, No 3. – P. 620-621. http://dx.doi.org/10.1134/S1070363211030352
Berezina L.P., Nikitin V.I., Sohranenko G.P. Vyznachennja skladu i stijkosti kompleksiv oksydu sirky (IV) z etanolaminamy v nevodnyh i vodnyh seredovyshhah. Vіsn. Odes. nac. unіv., Prirodnichі nauki, 1998, no 2, pp. 16–18. (in Ukrainian)
Kogtev S.E., Blokhin P.V., Ksandrov N.V., Borisenko A.S. Recovery of sulfur dioxide from discharged gases using amine-containing sorbents. Russ. J. Appl. Chem., 1999, vol. 72, no 10, pp. 1777-1779.
Blokhin P.V., Kogtev S.E., Petrov A.V., Oblivina T.A. Treatment of exhaust gases with methyldiethanolamine solution to remove sulfur dioxide. Russ. J. Appl. Chem., 2000, vol. 73, no 8, pp. 1417-1419.
Yang D., Hou M., Ning H., Zhang J., Ma J., Han B. Efficient SO2capture by amine functionalized PEG. Phys. Chem. Chem. Phys., 2013, vol. 15, no 41, pp. 18123-18127. http://dx.doi.org/10.1039/C3CP52911H
Tailor R., Sayari A. Grafted propyldiethanolamine for selective removal of SO2in the presence of CO2. Chem. Eng. J., 2016, vol. 289, pp. 142-149. http://dx.doi.org/10.1016/j.cej.2015.12.084
Ford T.A. Ab initio molecular orbital calculations of the structures and vibrational spectra of some molec-ular complexes containing sulphur dioxide. J. Mol. Struct., 2009, vol. 924–926, pp. 466–472. http://dx.doi.org/10.1016/j.molstruc.2008.10.007
Mingos D.M.P. A theoretical analysis of ambivalent and ambiphilic Lewis acid/bases with symmetry signatures. Coord. Chem. Rev., 2014, vol. 293, pp. 2-18. http://dx.doi.org/10.1016/j.ccr.2014.11.009
Shim J.-G., Jhon Y.-H., Kim J.-H., Jang K.-R., Kim J.-H. Computational Studies on the Sulfur Dioxide Ab-sorption by Organic Lewis Bases. Bull. Korean Chem. Soc., 2007, vol. 28, no 9, pp. 1609-1612. http://dx.doi.org/10.5012/bkcs.2007.28.9.1609
Helm D., Childs J.D., Christian S.D. The geometry of the charge transfer complex (CH3)3N·SO2 in the solid state. J. Chem. Soc. D., 1969, no 15, pp. 887-888. http://dx.doi.org/10.1039/C29690000887.
Oh J.J., LaBarge M.S., Matos J., Kampf J.W., HilligII K.W., Kuczkowski R.L. Structure of the trimethylamine-sulfur dioxide complex.J. Am. Chem. Soc., 1991, vol. 113, no 13, pp. 4732–4738. http://dx.doi.org/10.1021/ja00013a003
Singh U.C., Kollman P.A. Ab initio calculations on the structure and nature of the hydrogen bonded complex H2S···HF. J. Chem. Phys., 1984, vol. 80, pp. 353-355. http://dx.doi.org/10.1063/1.446454
Taleb-Bendiab A., Hillig II K.W., Kuczkowski R.L. Microwave spectrum of benzene·SO2: Barrier to inter-nal rotation, structure, and dipole moment. J. Chem. Phys., 1992, vol. 97, no 5, pp. 2996-3006. http://dx.doi.org/10.1063/1.463041
Toužín J., NeplechováK., Žák Z., Černík M. Syntheses and structures of donor–acceptor complexes of selenium dioxide with pyridine and trimethylamine. Collect. Czech. Chem. Commun., 2002, vol. 67, pp. 577-586.
Smith M.B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. Wiley, New York, 2013, 2080 p.
Faria D.L.A., Santos P.S. Raman and infrared spectra of some aromatic amine–sulphur dioxide molecular complexes. J. Raman Spectrosc., 1988, vol. 19, no 7, pp. 471–478. http://dx.doi.org/10.1002/jrs.1250190708
Gao F., Zhang J., Niu Y., Wei X. Desorption Property and Spectral Investigation of Dilute Sulfur Dioxide in Ethylene Glycol + N,N-Dimethylformamide System. Ind. Eng. Chem. Res., 2014, vol. 53, no 19, pp. 7871-7876. http://dx.doi.org/10.1021/ie500427m
Batsanov S.S. Van der Waals Radii of Elements. Inorg. Mater., 2001, vol. 37, no 9, pp. 871–885. http://dx.doi.org/10.1023/A:1011625728803
Cordero B., Gómez V., Platero-Prats A.E., Revés M., Echeverría J., Cremades E., Barragán F., Alvarez S. Co-valent radii revisited. Dalton Trans., 2008, vol. 21, pp. 2832–2838. http://dx.doi.org/10.1039/b801115jCor-dero_2008
Leopold K.R., Canagaratna M., Phillips J.A. Partially Bonded Molecules from the Solid State to the Strato-sphere. Acc. Chem. Res., 1997, vol. 30, no 2, pp. 57-64. http://dx.doi.org/10.1021/ar950115l
Fiacco D.L., Toro A., Leopold K.R. Structure, Bonding, and Dipole Moment of (CH3)3N−SO3. A Microwave Study. Inorg. Chem., 2000, vol. 39, no 1, pp. 37–43. http://dx.doi.org/10.1021/ic990925j
Mo Y., Gao J. Polarization and Charge-Transfer Effects in Lewis Acid−Base Complexes. J. Phys. Chem. A., 2001, vol. 105, no 26, pp. 6530–6536. http://dx.doi.org/10.1021/jp010348w
Post B., Schwartz R.S., Fankuchen I. The crystal structure of sulfur dioxide. Acta Cryst., 1952, vol. 5, no 3, pp. 372-374. http://dx.doi.org/10.1107/S0365110X5200109X
Morino Y., Tanimoto M., Saito S. Critical Survey of the Molecular Structure Determination by the Use of Spec-troscopic Data for SO2. Acta. Chem. Scand., 1988, vol. 19, no 46, pp. 346-351. http://dx.doi.org/10.3891/acta.chem.scand.42a-0346
Hunter E.P.L., Lias S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Apdate. J. Phys. Chem. Ref. Data., 1998, vol. 27, no 3, pp. 413-656. http://dx.doi.org/10.1063/1.556018
Romm I.P., Noskov Yu.G., Malkova A.A.The strength and length of donor-acceptor bonds in molecular complexes. Russ. Chem. Bull., Int. Ed., vol. 56, no 10, pp. 1935-1944. http://dx.doi.org/10.1007/s11172-007-0300-0
Guryanova E.N., Goldstein I.P., Romm I.P. Donor-Acceptor Bond. Wiley, New York, 1975, 366 pp.
Lihtenshtejn G.I. Kompensacionnyj jeffekt.Himicheskaja jenciklopedija. Pod red. Zefirova N.S. T. 2. Moscow, Sovetskaja jenciklopedija, 1990, pp. 868. (in Russian)
Starikov E.B. Norden B. Entropy-enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chem. Phys. Lett., 2012, vol. 538, pp. 118–120. http://dx.doi.org/10.1016/j.cplett.2012.04.028
Khoma R.E. Thermodynamics of the Dissociation of Aminomethanesulfonic Acid and its N-Substituted Deriva-tives in Aqueous Solutions at 293–313 K. Russ. J. Phys. Chem., 2017, vol. 91, no 1, pp. 76-79. http://dx.doi.org/10.1134/S0036024417010125
Gardner C.L., Day R.W. Vapour pressure and thermodynamic data for the binary liquid mixture of pyridine and sulphur dioxide. Can. J. Chem., 1984, vol. 62, no 5, pp. 986-989. http://dx.doi.org/10.1139/v84-162
Lorimer J.W., Smith B.C., Smith G.H. Total vapour pressures, thermodynamic excess functions and complex formation in binary liquid mixtures of some organic solvents and sulphur dioxide. J. Chem. Soc., Faraday Trans. 1., 1975, vol. 71, pp. 2232-2250. http://dx.doi.org/10.1039/F19757102232
Zipp A.P. Formation thermodynamics of aniline-SO2 adducts. J. Inorg. Nucl. Chem., 1974, vol. 36, no 6, pp. 1399-1402. http://dx.doi.org/10.1016/0022-1902(74)80086-2
Benoit R.L., Milanova E. Vapour pressure and calorimetric data for the solution of sulfur dioxide in aprotic solvents. Can. J. Chem., 1979, vol. 57, no 11, pp. 1319-1323. http://dx.doi.org/10.1139/v79-215
Woods A.S., Ferré S. Amazing Stability of the Arginine−Phosphate Electrostatic Interaction. J. Proteome Res., 2005, vol. 4, no 4, pp. 1397–1402. http://dx.doi.org/10.1021/pr050077s
Grundnes J., Christian S.D. Solvent Effects on Strong Charge-Transfer Complexes. I. Trimethylamine and Sulfur Dioxide in Gas and in Heptane. J. Am. Chem. Soc., 1968, vol. 90, no 9, pp. 2239–2245. http://dx.doi.org/10.1021/ja01011a006
Grundnes J., Christian S.D., Cheam V., Farnham S.B. Solvent Effects on Strong Charge-Transfer Complexes. IV. Trimethylamine and Sulfur Dioxide in the Vapor Phase. J. Am. Chem. Soc., 1971, vol. 93, no 1, pp. 20–23. http://dx.doi.org/10.1021/ja00730a003
Grundnes J., Christian S.D. Solvent Effects on Strong Charge Transfer Complexes. III. Trimethylamine and Sulphur Dioxide in Polar Solvents. Acta Chem. Scand., 1969, vol. 23, no 10, pp. 3583-3585. http://dx.doi.org/10.3891/acta.chem.scand.23-3583
Kuczkowski R.L., Taleb-bendiab A. Tunneling motions in sulfur dioxide complexes. Structures and Conforma-tions of Non-Rigid Molecules., 1993, Vol. 410, pp. 257-276. http://dx.doi.org/10.1007/978-94-011-2074-6_13
Bishop R., Craig D.C., Dance I.G., Scudder M.L., Ung A.T. Interpenetrating inclusion lattices: Comparison of the b-hydroquinone and ellipsoidal clathrate structures. J. Struct. Chem., 1999, vol. 40, no 5, pp. 663–671. http://dx.doi.org/10.1007/BF02903443
Huss А. J., Eckert C.A. Equilibria and ion activities in aqueous sulfur dioxide solutions. J. Phys. Chem., 1977, vol. 81, no 24, pp. 2268–2270. http://dx.doi.org/10.1021/j100539a015
Martell A.E., Smith R.M. Critical stability constants.Vol. 6: Second Supplement. New York, Plenum Press, 1989, 660 p.
Khoma R.E., Gelmboldt V.O., Koroeva L.V., Ennan A.A., Mazepa A.V., Brusilovskiy Yu.E. Spectral characterization of products descriptions of sulphur (IV) oxide ineraction with ethanolamines aqueous solutions.Voprosy khimii i khimicheskoi technologii, 2012, no 1, pp. 133-136. (in Russian)
Khoma R.E., Ennan A.A., Mazepa A.V., Gelmboldt V.O. Spectral characterization of products ineraction of sulphur dioxide with N-alkylated monoethanolamines derivatives aqueous solutions. Voprosy khimii i khimi-cheskoi technologii, 2013, no 1, pp. 136-138. (in Russian)
Khoma R.E., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Puzan A.N., Ennan A.A., Rakipov I.M. Synthesis and structure of N-(hydroxyethyl)ethylenediammonium sulfite monohydrate. Russ. J. Inorg. Chem., 2014, vol. 84, no 5, pp. 541-544. http://dx.doi.org/10.1134/S0036023614060096
Khoma R.E., Gelmboldt V.O., Baumer V.N., Shishkin O.V., Koroeva L.V. Synthesis and structure of aminogua-nidinium sulfite monohydrate. Russ. J. Inorg. Chem., 2013, vol. 58, no 7, pp. 843-847. http://dx.doi.org/10.1134/S0036023613070140
Khoma R.E., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Ennan A.A. Synthesis, crystal structure, vibrational spectra, and thermochemical transformations of tris(hydroxymethyl)aminomethane. Russ. J. Inorg. Chem., 2014, vol. 59, no 1, pp. 1-6. http://dx.doi.org/10.1134/S0036023614010069
Khoma R.E., Ennan A.A., Shishkin O.V., Baumer V.N., Gelmboldt V.O.Products of interaction between Sulfur(IV) oxide and aqueous solutions of hexamethylendiamine and tert-Butylamine: The crystal structure of hexamethylenediammonium sulfate dihydrate. Russ. J. Inorg. Chem., 2012, vol. 57, no 12, pp. 1559-1562. http://dx.doi.org/10.1134/S003602361212008X
Khoma R.E., Gelmboldt V.O., Baumer V.N., Puzan A.N., Ennan A.A. Methylammonium sulfate: Synthe-sis and structure. Russ. J. Inorg. Chem., 2015, vol. 60, no 10, pp. 1199-1203. http://dx.doi.org/10.1134/S0036023615100101
Khoma R.E., Ennan A.A., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Mazepa A.V., Brusilovskii Yu.E. Prep-aration and some physicochemical properties of benzylammonium sulfates. Russ. J. Gen. Chem., 2014, vol. 84, no 4, pp. 637-641. http://dx.doi.org/10.1134/S1070363214040069
Belin C., Roziere J., Potier J. The Structure of 2,2’-Bipyridiniurn Bis(fluorosulfate). Acta Cryst. 1981, vol. B37, pp. 1306-1309. http://dx.doi.org/10.1107/S0567740881005761
Bowen R.J., Fernandes M.A., Gitari P.W., Layh M. 2,2’-Bipyridinium(1+) bromide monohydrateActa Crystal-logr C., 2004, vol. C60(Pt 2), pp. o113-114. http://dx.doi.org/10.1107/S0108270103028282
Ma G., Ilyukhin A., Glaser J. 2,2’-Bipyridinium bis(perchlorate). Acta Crystallogr. C., 2000, vol. C56, pp. 1473-1475. http://dx.doi.org/10.1107/S0108270100012452
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2016 Вісник Одеського національного університету. Хімія
Ця робота ліцензується відповідно до Creative Commons Attribution-ShareAlike 4.0 International License.
Правовласниками опублікованого матеріалу являються авторський колектив та засновник журналу на умовах, що визначаються видавничою угодою, що укладається між редакційною колегією та авторами публікацій. Ніяка частина опублікованого матеріалу не може бути відтворена без попереднього повідомлення та дозволу автора.
Публікація праць в Журналі здійснюється на некомерційній основі. Комісійна плата за оформлення статті не стягується.