ГІБРИДНІ ОРГАНО–НЕОРГАНІЧНІ АНСАМБЛІ НА ОСНОВІ КООРДИНАЦІЙНИХ МЕТАЛ–ЛІГАНДНИХ ФРАГМЕНТІВ: СИНТЕЗ, ВЛАСТИВОСТІ, ЗАСТОСУВАННЯ У ХРОМАТОГРАФІЇ
DOI:
https://doi.org/10.18524/2304-0947.2023.2(85).286598Ключові слова:
координаційні сполуки, метало-органічні каркаси (MOF), хроматографія, ВЕРХ, ГХ–МС, сорбенти, поліциклічні ароматичні вуглеводніАнотація
В роботі систематизовано дані щодо методів синтезу метал-органічних каркасних структур (MOF-metal-organic framework) на основі координаційних сполук металів, в тому числі Германію, з полідентатними ароматичними кислотами, їх властивостей та застосування у якості стаціонарної фази у хроматографії, сорбентів для твердофазної екстракції та мікроекстракції, а також магнітної твердофазної екстракції. Означено перспективу використання гібридних органо-неорганічних ансамблів на основі координаційно метал-лігандних фрагментів для визначення поліциклічних ароматичних вуглеводнів – високотоксичних органічних забруднюючих речовин.
Посилання
Kodavanti P. R. S., Valdez M. C., Yang Jae-Ho, Curras-Collazo M., Loganathan B. G. Polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans. Chapter 37 in book: Reproductive and Developmental Toxicology, Academic Press, 2022, pp. 727–758. https://doi.org/10.1016/B978-0-323-89773-0.00037-0
Chen X. Y., Zhao B., Shi W., Xia J., Cheng P., Liao D. Z., Jiang Z. H. Microporous metal-organic frameworks built on a Ln3 cluster as a six-connecting node. Chem. Mater., 2005, vol. 17, no 11, pp. 2866–2874. https://doi.org/10.1021/cm050526o
Wu J. Y., Chao T. C., Zhong M. S. Influence of counteranions on the structural modulation of silver-di(3-pyridylmethyl)amine coordination polymers. Cryst. Growth Des., 2013, vol. 13, no 7, pp. 2953–2964. https://doi.org/10.1021/cg400363e
Qiu S., Zhu G. Molecular engineering for synthesizing novel structures of metaleorganic frameworks with multifunctional properties. Coord. Chem. Rev., 2009, vol. 253, pp. 2891–2911. https://doi.org/10.1016/j.ccr.2009.07.020
Serre C., Millange F., Thouvenot C., Nogues M., Marsolier G., Louer D., Ferey G. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)•{O2C–C6H4–CO2}•{HO2C–C6H4–CO2H}x•H2Oy. J. Am. Chem. Soc., 2002, vol. 124, pp. 13519–13526. https://doi.org/10.1021/ja0276974
Zhang Y., Bo X., Nsabimana A., Han C., Li M., Guo L. Electrocatalytically active cobalt- based metal-organic framework with incorporated macroporous carbon composite for electrochemical applications. J. Mater. Chem. A., 2015, vol. 3, no 2, pp. 732–738. https://doi.org/10.1039/C4TA04411H
Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K., Pastre J. Metal-organic frameworks – prospective industrial applications. J. Mater. Chem., 2006, vol. 16, pp. 626–636. https://doi.org/10.1039/B511962F
Campagnol N., Souza E. R., De Vos D. E., Binnemans K., Fransaer J. Luminescent terbium-containing metal-organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun., 2014, vol. 50, pp. 12545–12547. https://doi.org/10.1039/C4CC05742B
Pichon A., Lazuen-Garay A., James S. L. Solvent-free synthesis of a microporous metal- organic framework. Cryst. Eng. Commun., 2006, vol. 8, pp. 211–214. https://doi.org/10.1039/B513750K
James S. L., Adams C. J., Bolm C., Braga D., Collier P., Friscic T., Krebs A. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, vol. 41, pp. 413–447. https://doi.org/10.1039/C1CS15171A
Masoomi M. Y., Morsali A., Junk P. C. Rapid mechanochemical synthesis of two new Cd(II)-based metal-organic frameworks with high removal efficiency of Congo red. Cryst. Eng. Commun., 2015, vol. 17, pp. 686–692. https://doi.org/10.1039/C4CE01783H
Ni Z., Masel R. I. Rapid production of metal-organic frameworks via microwave- assisted solvothermal synthesis. J. Am. Chem. Soc., 2006, vol. 128, pp. 12394–12395. https://doi.org/10.1021/ja0635231
Sabouni R., Kazemian H., Rohani S. Microwave synthesis of the CPM-5 metal organic framework. Chem. Eng. Technol., 2012, vol. 35, pp. 1085–1092. https://doi.org/10.1002/ceat.201100626
Son W. J., Kim J., Kim J., Ahn W. S. Sonochemical synthesis of MOF-5. Chem. Commun., 2008, vol. 47. pp. 6336–6338. https://doi.org/10.1039/B814740J
Haque E., Khan N. A., Park J. H., Jhung S. H. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem. Eur. J., 2010, vol. 16, pp. 1046–1052. https://doi.org/10.1002/chem.20090238
Jin L.N., Liu Q., Sun W. Y. An introduction to synthesis and application of nanoscale metal-carboxylate coordination polymers. Cryst. Eng. Commun., 2014, vol. 16, pp. 3816–3828. https://doi.org/10.1039/C3CE41962B
Gándara F., Medina M. E., Snejko N., Gómez-Lor B., Iglesias M., Gutiérrez-Puebla E., Monge M. A. Two-Dimensional Hybrid Germanium Zeotype Formed by Selective Coordination of the trans-1,2-Diaminocyclohexane Isomer to the Ge Atom: Heterogeneous Acid–Base Bifunctional Catalyst. Inorg. Chem., 2008, vol. 47, no 15, pp. 6791–6795. https://doi.org/10.1021/ic8004097
Martsinko E., Buchko O., Chebanenko E., Seifullina I., Dyakonenko V., Shishkina S. Different structural types of hetero-metal bis(citrato)germanates with 1,10-phenanthroline: Targeted synthesis, spectral, thermal properties and Hirshfeld surface analysis. J. Mol. Struct., 2021, vol. 1237, pp. 130297. https://doi.org/10.1016/j.molstruc.2021.130297
Seifullina I., Martsinko E., Afanasenko E. Biocoordination compounds of Germanium (IV): formation of supramolecular salts with tartratogermanate anions. Chapter in book: Selected Topics in Germanium, New York, Nova Science Publishers Inc., 2022, pp. 93–126. https://novapublishers.com/shop/selected- topics-in-germanium/
Martsinko Е. E., Seifullina I. I., Chebanenko E. A., Pesaroglo А. G. Mixed-ligand germanium–lanthanide complexes with 1-hydroxyethylidenediphosphonic acid and 2,2’-bipyridine. Vіsn. Odes. nac. unіv., Hіm., 2022, vol. 27, no 3, pp. 53–62. https://doi.org/10.18524/2304–0947.2022.3(83).268690 (in Ukrainian)
Willans C. E., French S., Anderson K. M., Barbour L. J., Gertenbach J. A., Lloyd G. O., Dyer R. J., Junk P. C., Steed J. W. Tripodal imidazole frameworks: reversible vapour sorption both with and without significant structural changes. Dalton Trans., 2011, vol. 40, pp. 573–582. https://doi.org/10.1039/C0DT01011A
Friscic T., Fabian L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). Cryst. Eng. Commun., 2009, vol. 11, pp. 743–749. https://doi.org/10.1039/B822934C
Ying Р., Yu J., Su W. Liquid-Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv. Synth. Catal., 2021, vol. 363, no 5, pp. 1246–1271. https://doi.org/10.1002/adsc.202001245
Friščić T., Reid D., Halasz I., Stein R., Dinnebier R., Duer M. Ion- and Liquid-Assisted Grinding: Improved Mechanochemical Synthesis of Metal-Organic Frameworks Reveals Salt Inclusion and Anion Templating. Angew. Chemie., 2010, vol. 49, no 4. pp. 712–715. https://doi.org/10.1002/anie.200906583
Gu Z. Y., Wang G., Yan X. P. MOF-5 metal-organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Anal. Chem., 2010, vol. 82, no 4, pp. 1365–1370. https://doi.org/10.1021/ac902450f
Van der Perre S., Liekens A., Bueken B., De Vos D. E., Baron G. V., Denayer J. F. M. Separation properties of the MIL-125(Ti) Metal-Organic Framework in high-performance liquid chromatography revealing cis/trans selectivity. J. Chromatogr., A., 2016, vol. 1469, pp. 68–76. https://doi.org/10.1016/J.CHROMA.2016.09.057
Liu X., Wang C., Wang Z., Wu Q., Wang Z. Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides. Microchim. Acta., 2015, vol. 182, no 11–12, pp. 1903–1910. https://doi.org/10.1007/s00604-015-1530-8
Rocío-Bautista P., Pino V., Ayala J. H., Pasán J., Ruiz-Pérez C., Afonso A. M. A magnetic-based dispersive micro-solid-phase extraction method using the metal- organic framework HKUST-and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions. J. Chromatogr., A., 2016, vol. 1436, pp. 42–50. https://doi.org/10.1016/j.chroma.2016.01.067
Salarian M., Ghanbarpour A., Behbahani M., Bagheri S., Bagheri A. A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid- phase extraction of ultra traces of lead(II) ions. Microchim. Acta, 2014, vol. 181, no 9–10, pp. 999–1007. https://doi.org/10.1007/s00604-014-1200-2
Gao J., Huang C., Lin Y., Tong P., Zhang L. In situ solvothermal synthesis of metal- organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatogr., A., 2016, vol. 1436, pp. 1–8. https://doi.org/10.1016/j.chroma.2016.01.051
Lv F., Gan N., Huang J., Hu F., Cao Y., Zhou Y., Dong Y., Zhang L., Jiang S. A poly-dopamine based metal-organic framework coating of the type PDA-MIL-53(Fe) for ultrasound-assisted solid-phase microextraction of polychlorinated biphenyls prior to their determination by GC–MS. Microchim. Acta, 2017, vol. 184, no 8, pp. 2561–2568. https://doi.org/10.1007/s00604-017-2208-1
Lu N., He X., Wang T., Liu S., Hou X. Magnetic solid-phase extraction using MIL-101(Cr)-based composite combined with dispersive liquid-liquid microextraction based on solidification of a floating organic droplet for the determination of pyrethroids in environmental water and tea samples. Microchem. J., 2018, vol. 137, pp. 449–455. https://doi.org/10.1016/j.microc.2017.12.009
Huang Z., Liu S., Xu J., Yin L., Sun F., Zhou N., Ouyang G. Fabrication of 8-aminocaprylic acid doped UIO-66 as sensitive solid-phase microextraction fiber for nitrosamines. Talanta, 2018, vol. 178, pp. 629–635. https://doi.org/10.1016/j.talanta.2017.09.090
Rocío-Bautista P., Martínez-Benito C., Pino V., Pasán J., Ayala J. H., Ruiz-Pérez C., Afonso A. M. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid- phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta, 2015, vol. 139, pp. 13–20. https://doi.org/10.1016/j.talanta.2015.02.032
Gu Z. Y., Yang C. X., Chang N., Yan X. P. Metal-organic frameworks for analytical chemistry: From sample collection to chromatographic separation. Acc. Chem. Res., 2012, vol. 45, no 5, pp. 734–745. https://doi.org/10.1021/ar2002599
Zhou Y. Y., Yan X. P., Kim K. N., Wang S. W., Liu M. G. Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials. J. Chromatogr., A, 2006, vol. 1116, no 1–2, pp. 172–178. https://doi.org/10.1016/j.chroma.2006.03.061
Yang S., Chen C., Yan Z., Cai Q., Yao S. Evaluation of metal-organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters. J. Sep. Sci., 2013, vol. 36, no 7, pp. 1283–1290. https://doi.org/10.1002/jssc.201200983
Lambert J. B., Liu Zh., Liu Ch. Metal-Organic Frameworks from Silicon- and Germanium-Centered Tetrahedral Ligands. Organometallics, 2008, vol. 27, no 7, pp. 1464–1469. https://doi.org/10.1021/om701262m
Gao J., Huang C., Lin Y., Tong P., Zhang L. In situ solvothermal synthesis of metal- organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatogr., A, 2016, vol. 1436, pp. 1–8. https://doi.org/10.1016/j.chroma.2016.01.051
Yuan Y., Lin X., Li T., Pang T., Dong Y., Zhuo R., Wang Q., Cao Y., Gan N. A solid phase microextraction Arrow with zirconium metal-organic framework/molybdenum disulfide coating coupled with gas chromatography–mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples. J. Chromatogr., A, 2019, vol. 1592, pp. 9–18. https://doi.org/10.1016/j.chroma.2019.01.066
Zhou P., Wang R., Fan R., Yang X., Mei H., Chen H., Wang H., Wang Z., Wang X. Magnetic amino-functionalized metal-organic frameworks as a novel solid support in ionic liquids-based effervescent tablets for efficient extraction of polycyclic aromatic hydrocarbons in milks. Ecotoxicol. Environ. Saf., 2012, vol. 222, pp. 112482. https://doi.org/10.1016/j.ecoenv.2021.112482
Zhou Q., Lei M., Li J., Liu Y., Zhao K., Zhao D. Magnetic solid phase extraction of N- and S-containing polycyclic aromatic hydrocarbons at ppb levels by using a zerovalent iron nanoscale material modified with a metal organic framework of type Fe@MOF-5, and their determination by HPLC. Microchim. Acta, 2017, vol. 184, no 4, pp. 1029–1036. https://doi.org/10.1007/s00604-017-2094-6
Soury S., Bahrami A., Alizadeh S., Ghorbani S. F., Nematollahi D. Development of a needle trap device packed with zinc based metal-organic framework sorbent for the sampling and analysis of polycyclic aromatic hydrocarbons in the air. Microchem. J., 2019, vol. 148, pp. 346–354. https://doi.org/10.1016/j.microc.2019.05.019
Wang B., Wang P., Xie L.-H., Lin R.-B., Lv J., Li J.-R., Chen B. A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nat. Commun., 2019, vol. 10, pp. 3861. https://doi.org/10.1038/s41467-019-11912-4
Zango Z. U., Sambud N. S., Jumbri K., Abu Bakar N. H. H., Abdullah N. A. F., Negim E. S. M., Saad B. Experimental and molecular docking model studies for the adsorption of polycyclic aromatic hydrocarbons onto UiO-66(Zr) and NH2-UiO-66(Zr) metal-organic frameworks. Chem. Eng. Sci., 2020, vol. 220, pp. 115608. https://doi.org/10.1016/j.ces.2020.115608
Zhang X., Zang X. H., Wang J. T., Wang C., Wu Q. H., Wang Z. Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid- phase microextraction of polycyclic aromatic hydrocarbons from water and soil. Microchim. Acta, 2015, vol. 182, pp. 2353–2359. https://doi.org/10.1007/s00604-015-1566-9
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution-ShareAlike 4.0 International License.
Правовласниками опублікованого матеріалу являються авторський колектив та засновник журналу на умовах, що визначаються видавничою угодою, що укладається між редакційною колегією та авторами публікацій. Ніяка частина опублікованого матеріалу не може бути відтворена без попереднього повідомлення та дозволу автора.
Публікація праць в Журналі здійснюється на некомерційній основі. Комісійна плата за оформлення статті не стягується.