DOI: https://doi.org/10.18524/2304-0947.2020.3(75).211720
ВПЛИВ КИСЛОТНОГО МОДИФІКУВАННЯ ПРИРОДНИХ АЛЮМОСИЛІКАТІВ НА АКТИВНІСТЬ Pd(ІІ)-Сu(ІІ)-КАТАЛІЗАТОРІВ ОКИСНЕННЯ МОНООКСИДУ КАРБОНУ
Анотація
Ключові слова
Повний текст:
PDFПосилання
Rakitskaya T.L., Ennan A.A., Volkova V.I. Nizkotemperaturnaia kataliticheskaia ochistka vozdukha ot monooksida ugleroda. Odessa: Ekologiia, 2005, p. 191. (in Russian)
Rakitskaya T.L., Kiose T.A., Ennan A.A., Dzhiga A.M., Volkova V.Ia., Golubchik K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia. ІІІ. Nanesennye metallokompleksnye katalizatory. Visn. Odes. nac. univ., Him., 2013, vol. 18, no 4(48), pp. 5-12. (in Russian)
Park E.D. and Lee J.S. Effect of Surface Treatment of the Support on CO Oxidation over Carbon-Supported Wacker-Type Catalysts. J. Catal., 2000, vol. 193, no 1, pp. 5-15. https://doi.org/10.1006/jcat.2000.2879
Wang L., Zhang Y., Lou Y. Pd catalyst supported on activated carbon honeycomb monolith for CO oxidation and the application in air purification of vehicular tunnel. Fuel Process. Technol., 2014, vol. 122, pp. 23-29. https://doi.org/10.101 6/j.fuproc.2014.01.009
Desai M.N., Butt J.B. and Dranoff J.S. Low-temperature oxidation of CO by a heterogenized Wacker catalyst. J. Catal., 1983, vol. 79, no 1, pp. 95-103. https://doi.org/10.1016/0021-9517(83)90292-0
Rakitskaya T.L., Kiose T.A., Golubchik K.O., Ennan A.A., Volkova V.Y. Acid-modified clinoptilolite as a support for palladium-copper complexes catalyzing carbon monoxide oxidation with air oxygen. Chem. Cent. J., 2017, vol. 11, no 1, pp. 1-10. https://doi.org/10.1186/s13065-017-0256-6
Rakitskaya T.L., Vasylechko V.O., Kiose T.O., Dzhyga G.M., Gryshchouk G.V., Volkova V.Y. Some features of Pd(II) and Cu(II) adsorption on bentonites. Adsorpt. Sci. Technol., 2017, vol. 35, no 5-6, pp. 482-489. https:// doi.org/10.1177%2F0263617417697713
Hernandez M.A., Rojas F., Lara V.H. Nitrogen-sorption characterization of microporous structure of clinoptilolite-type zeolites. J. Porous Mater., 2000, vol. 7, pp. 443-454. https://doi.org/10.1023/A:1009662408173
Elaipoulos K, Perraki T, Grigoropoulou E. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Microporous Mesoporous Mater., 2010, vol. 134, pp. 29-43. https://doi.org/10.1016/j.micromeso.2010.05.004
Dziedzicka A., Sulikowski B., Ruggiero-Mikołajczyk M. Catalytic and physicochemical properties of modified natural clinoptilolite. Catal. Today, 2016, vol. 135, no 1, pp. 50-58. https://doi.org/10.1016/j.cattod.2015.04.039
Rakitskaya T.L., Raskola L.A., Kiose T.A., Zakhariia A.N. Kitaiskaia V.V. Adsorbtciia ionov 3d metallov prirodnym i kislotno-modifitcirovannym klinoptillolitom. Visn. Odes. nac. univ., Him., 2010, vol. 15, no 2-3, pp. 85-91. (in Russian)
Rakitskaya T.L., Kiose T.A., Truba A.S., Ennan A.A., Dlubovskiy R.M., Volkova V.Ya. Adsorption of water vapour by natural and chemically modified clinoptilolite and mordenite samples. Chem. Phys. Technol. Surf., 2012, vol. 3, no 4, pp. 455−462.
Rakitskaya T.L., Kiose T.A., Ennan A.A., Golubchik K.O., Oleksenko L.P., Gerasiova V.G. The Influence of Conditions of Acid-Thermal Modification of Clinoptilolite on Catalytic Properties of Palladium-Copper Complexes Anchored on it in the Reaction of Carbon Monoxide Oxidation. Russ. J. Phys. Chem, 2016, vol. 90, no 6, pp. 1128-1135.
Rakitskaya T.L., Kiose T.A., Golubchik K.O., Oleksenko L.P., Dlubovskii R.M., Geraseva V.G. Vliianie prodolzhitelnosti kislotno-termalnogo mo-difitcirovaniia na adsorbtcionno-strukturnye kharakteristiki klinopti-lolita. Visn. Odes. nac. univ., Him., 2016, vol. 21, no 1(57), pp. 24-35. https://doi.org/10.18524/2304-0947.2016.1(57).67509 (in Russian)
Armbruster T., Gunter M. Stepwise dehydration of heulandite-clinoptilolite from Succor Creek, Oregon, U.S.A.: A single-crystal X-ray study at 100 K. Am. Mineral., 1991, vol. 76, pp. 1872-1873. https://doi.org/10.1016/j.cemconres.2015.08.007
Burris L.E., Juenger M.G. The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials. Cem. Concr. Res., 2016, vol. 79, pp. 185-193. https://doi.org/10.1016/j.cemconres.2015.08.007
Rakitskaya T.L., Truba A.S., Kiose T.A., Raskola L.A. Mekhanizmy formiro-vaniia na poristykh nositeliakh kompleksov d metallov i ikh kataliticheskaia aktivnost v redoks-reaktciiakh. Visn. Odes. nac. univ., Him., 2015, vol. 20, no 2(54), pp. 27-48. https://doi.org/10.18524/2304-0947.2015.2(54).50626 (in Russian)
Пристатейна бібліографія ГОСТ
1. Ракитская Т.Л., Эннан А.А., Волкова В.Я. Низкотемпературная каталитическая очистка воздуха от монооксида углерода. – Одесса: Экология, 2005. – 191 с.
2. Ракитская Т.Л., Киосе Т.А., Эннан А.А., Джига А.М., Волкова В.Я., Голубчик К.О. Состояние и перспективы разработки низкотемпературных катализаторов окисления монооксида углерода респираторного назначения. ІІІ. Нанесенные металлокомплексные катализаторы // Вісник ОНУ. Хімія. – 2013. –Т. 18, № 4(48). – С. 5-12.
3. Park E.D. and Lee J.S. Effect of Surface Treatment of the Support on CO Oxidation over Carbon-Supported Wacker-Type Catalysts // J. Catal. – 2000. – Vol. 193, N 1. – Р. 5-15. https://doi.org/10.1006/jcat.2000.2879
4. Wang L., Zhang Y., Lou Y. Pd catalyst supported on activated carbon honeycomb monolith for CO oxidation and the application in air purification of vehicular tunnel // Fuel Process. Technol. – 2014. – Vol. 122. – Р. 23-29. https://doi.org/10.101 6/j.fuproc.2014.01.009
5. Desai M.N., Butt J.B. and Dranoff J.S. Low-temperature oxidation of CO by a heterogenized Wacker catalyst // J. Catal. – 1983. – Vol. 79, N 1. – Р. 95-103. https://doi.org/10.1016/0021-9517(83)90292-0
6. Rakitskaya T.L., Kiose T.A., Golubchik K.O., Ennan A.A., Volkova V.Y. Acid-modified clinoptilolite as a support for palladium-copper complexes catalyzing carbon monoxide oxidation with air oxygen // Chem. Cent. J . – 2017. – Vol. 11, N 1. – P. 1-10. https://doi.org/10.1186/s13065-017-0256-6
7. Rakitskaya T.L., Vasylechko V.O., Kiose T.O., Dzhyga G.M., Gryshchouk G.V., Volkova V.Y. Some features of Pd(II) and Cu(II) adsorption on bentonites // Adsorpt. Sci. Technol. – 2017. – Vol. 35, N 5-6. – Р. 482-489. https://doi.org/10.1177%2F0263617417697713
8. Hernandez M.A., Rojas F., Lara V.H. Nitrogen-sorption characterization of microporous structure of clinoptilolite-type zeolites // J. Porous Mater. – 2000. – Vol. 7. – Р. 443–454. https://doi.org/10.1023/A:1009662408173
9. Elaipoulos K, Perraki T, Grigoropoulou E. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis // Microporous Mesoporous Mater. – 2010. – Vol. 134. – Р. 29-43. https://doi.org/10.1016/j.micromeso.2010.05.004
10. Dziedzicka A., Sulikowski B., Ruggiero-Mikołajczyk M. Catalytic and physicochemical properties of modified natural clinoptilolite // Catal. Today. – 2016. – Vol. 135, N 1. – Р. 50-58. https://doi.org/10.1016/j.cattod.2015.04.039
11. Ракитская Т.Л., Раскола Л.А., Киосе Т.А., Захария А.Н. Китайская В.В. Адсорбция ионов 3d металлов природным и кислотно-модифицированным клиноптилолитом // Вісник ОНУ. Хімія. – 2010. – Т. 15, № 2-3. – С. 85-91.
12. Rakitskaya T.L., Kiose T.A., Truba A.S., Ennan A.A., Dlubovskiy R.M., Volkova V.Ya. Adsorption of water vapour by natural and chemically modified clinoptilolite and mordenite samples // Chem. Phys. Technol. Surf. – 2012. – Vol. 3, N 4. – P. 455−462.
13. Rakitskaya T.L., Kiose T.A., Ennan A.A., Golubchik K.O., Oleksenko L.P., Gerasiova V.G. The Influence of Conditions of Acid-Thermal Modification of Clinoptilolite on Catalytic Properties of Palladium-Copper Complexes Anchored on it in the Reaction of Carbon Monoxide Oxidation // Russ. J. Phys. Chem. – 2016. – Vol. 90, N 6. – P. 1128−1135.
14. Ракитская Т.Л., Киосе Т.А., Голубчик К.О., Олексенко Л.П., Длубовский Р.М., Герасева В.Г. Влияние продолжительности кислотно-термального модифицирования на адсорбционно-структурные характеристики клиноптилолита // Вісн. Одеськ. нац. ун-ту. Хімія. – 2016. – Т. 21, № 1(57). – С. 24-35. https://doi.org/10.18524/2304-0947.2016.1(57).67509
15. Armbruster T., Gunter M. Stepwise dehydration of heulandite-clinoptilolite from Succor Creek, Oregon, U.S.A.: A single-crystal X-ray study at 100 K // Am. Mineral. – 1991. – Vol. 76. – Р. 1872-1873.
16. Burris L.E., Juenger M.G. The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials // Cem. Concr. Res. – 2016. – Vol. 79. – Р. 185-193. https://doi.org/10.1016/j.cemconres.2015.08.007
17. Ракитская Т.Л., Труба А.С., Киосе Т.А., Раскола Л.А. Механизмы формирования на пористых носителях комплексов d‑металлов и их каталитическая активность в редокс-реакциях // Вісник ОНУ. Хімія. –2015. – Т. 20, № 2(54). – С. 27-48. https://doi.org/10.18524/2304-0947.2015.2(54).50626

Ця робота ліцензована Creative Commons Attribution-ShareAlike 4.0 International License.