ANTIMICROBIAL AND ANTIVIRAL RESPIRATORY MATERIALS

Автор(и)

  • A. A. Ennan Одеський національний університет імені І. І. Мечникова, Україна
  • R. E. Khoma Physico-Chemical Institute of Environment and Human Protection; Odessa I.I. Mechnikov National University, Україна
  • R. M. Dlubovskii Physico-Chemical Institute of Environment and Human Protection, Україна
  • N. N. Abramova Physico-Chemical Institute of Environment and Human Protection, Україна
  • S. V. Vodzinskiy Physico-Chemical Institute of Environment and Human Protection; Odessa I.I. Mechnikov National University, Україна

DOI:

https://doi.org/10.18524/2304-0947.2020.3(75).211712

Ключові слова:

filtering materials, antibacterial and antiviral functions, bioaerosols

Анотація

The review is devoted to issues related to the selection of filter materials for the manufacturing of personal respiratory protection for the population, medical personnel during a pandemic. Biological aerosols, conditions of their formation and methods of capturing are characterized. The time of preservation of the virulent activity of microorganisms depends on their biological properties, air humidity and temperature, pH and salt composition of droplet aerosols, as well as physicochemical properties of sorbents. The main methods (chemical and biocatalytic modification, dessing and impregnation) of imparting antibacterial and virucidal properties to filter materials by biocides using, as well as the requirements for them are described. Because of the ongoing outbreak of a new coronavirus infection in the world, recognized by the WHO as a pandemic, it is of practical interest to provide promising bioprotection against pathogens of infectious diseases by including biocidal agents in filtering materials for respiratory purposes and identifying antibacterial and antiviral activity in existing chemisorption materials. Based on the analysis of the literature data, it was noted that the impregnated fibrous chemisorbents developed by the authors of the review based on biocides: N-containing organic bases (hexamethylenetetramine, ethanolamines); glycine; chelating agents (EDTA, phosphoric, hydroxyethylidenediphosphonic and citric acids); copper (II), nickel (II) and cobalt (II)  complexes; acid-base indicators – should have additional antibacterial and antiviral functions. Chitosan, polyethyleneimine, ammonium quaternary bases, aminoalkanesulfonic acids, and dyes of various natures, including porphyrins, are promising for the creation of chemisorbents with biocidal properties.

Посилання

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. Lancet., 2020, vol. 395, no 10223, pp. 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R. Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A Novel Coronavirus from Patients with Pneumonia in China. N. Engl. J. Med., 2020, vol. 382, no 8, pp. 727–733. https://doi.org/10.1056/nejmoa2001017

Chan J.F., Yuan S., Kok K.H., To K.K., Chu H., Yang J.,Xing F., Liu J., Yip C.C.-Y., Poon R.W.-S., Tsoi H.-W., Lo S.K.-F., Chan K.-H., Poon V.K.-M., Chan W.-M., Ip J.D., Cai J.-P., Cheng V.C.-C., Chen H., Hui C.K.-M., Yuen K.-Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-toperson transmission: a study of a family cluster. Lancet., 2020, vol. 395, no 10223, pp. 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9

Drosten C., Guonther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguière A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Müller S., Rickerts V., Stürmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome.N. Engl. J. Med., 2003, vol. 348, no 20, pp. 1967–1976.

Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, vol. 367, pp. 1814–1820.

Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell., 2020, vol. 180, pp. 1-12. https://doi.org/10.1016/j.cell.2020.02.058

Zegarra-Valdivia J., Vilca B.C., Tairo T., Munive V., Lastarria C. Neurological component in coronaviruses induced disease: systematic review of SARS-CoV, MERS-CoV, and SARS-CoV-2. Preprint., 2020. https://doi.org/10.31219/osf.io/2fqtz

Farzanehpour M., Karimi M.R., Rezayat P., Bolandian M., Nodoushan M.M., Ghaleh H.E.G. A Review on the Mechanisms Involved in the Immunopathogenesis of SARS-CoV-2. J. Mil. Med., 2020, vol. 22, no 2, pp. 147-160. https://doi.org/10.30491/JMM.22.2.147

Gorenkov D.V., Hantimirova L.M., Shevcov V.A., Rukavishnikov A.V., Merkulov V.A., Olefir Ju.V. An Outbreak of a New Infectious Disease COVID-19: β-coronaviruses as a Threat to Global Healthcare. Biopreparations. Prevention, Diagnosis, Treatment.. 2020, vol. 20, no 1, pp. 6-20. https://doi.org/10.30895/2221-996X-2020-20-1-6-20 (in Russian)

Priluckii A.S. Coronavirus disease 2019. part 1: Coronavirus characteristic, epidemiological features. Vestn.jepidemiol. i gigieny, 2020, vol. 24, no 1, pp. 77-86. (in Russian)

Ennan A.A., Abramova N.N., Khoma R.E. Katalog vigotovljaєmih zasobіv іndivіdual’nogo zahistu. Physical-Chemical Institute for Environment and Human Protection of MES of Ukraine and NAS of Ukraine. Ed. by A.A. Ennan. Odesa, 2017, 52 p. (in Ukrainian)

Batyrev V.V., Zhivulin G.A. Basics of individual protection of a person from dangerous chemical and radioactive substances. Moscow, FGBU VNII GO World Cup (FC), 2016, 204 p. (in Russian)

DSTU EN 149:2017 Respiratory protective devices. Filtering half masks to protect against particles. Requirements, testing, marking is classified in these ICS categories (EN 149:2001+A1:2009, IDT) 01.02.2018(in Ukrainian)

EN 14683:2005. Surgical masks. Requirements and test methods

DSTU EN 14683:2014. Surgical masks. Requirements and test methods. (in Ukrainian)

GOST R 58396-2019. Medical face masks. Requirements and test methods. (in Russian)

ASTM F2101-14. Standard Test Method For Evaluating The Bacterial Filtration Efficiency (BFE) Of Medical Face Mask Materials, Using A Biological Aerosol Of Staphylococcus Aureus, American National Standards Institute, New York. 2014.

Basmanov P.I., Kaminsky S.L., Korobeinikova A.V., Trubitsyna M.E. Respiratory protective devices. Reference manual. Saint-Peterburg, Iskusstvo Rossii, 2002, 400 p. (in Russian)

Ennan A.A., Cheberyachko S.I., Knish I.M., Khoma R.E., Abramova N.M. Sposіb vіzualіzacії mіsc’ neshhіl’nogo priljagannja napіvmasok do oblichchja. Patent UA, no 127920, publ. 27.08.2018 (in Ukrainian)

Honarbakhsh M., Jahangiri M., Ghaem H., Ghorbani M., Omidvari F., Khorasani M.A., Shabani F. Qualitative Fit Testing of Medium – Size N95/FFP2 Respirators on Iranian Health Care Workers. Health Scope., 2018, vol. 7, no 4. https://doi.org/10.5812/jhealthscope.62884

21. Bioaerosols. Handbook Ed. C.S. Cox, C.M. Waters. Boca Raton, London, Tokyo, CRC Press, Lewis Publ., 1995, 621 p.

Grinshpun S. Biological Aerosols. In book: Aerosols. Sci. Technol., 2010, Wiley-Vch, pp. 379-406. https://doi.org/10.1002/9783527630134.ch13

Golubkova A.A., Sisin E.I. Maski i respiratory v medicine: vybor i ispol’zovanie. 2011, 32 p. (in Russian)

Chekman I.S., Syrovaja A.O., Andreeva S.V., Makarov V.A. Ajerozoli – dispersnye sistemy. Monografija. Kharkov, Cifrova drukarnja no 1, 2013, 100 p. (in Russian)

Chan K.H., Malik Peiris J.S., Lam S.Y., Poon L.L.M., Yuen K.Y., Seto W.H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virology., 2011, vol. 2011, pp. 1-7. Article ID 734690. https://doi.org/10.1155/2011/734690

Pabst G., Hodzic A., Štrancar J., Danner S., Rappolt M., Laggner P. Rigidification of Neutral Lipid Bilayers in the Presence of Salts. Biophys. J., 2007, vol. 93, no 8, pp. 2688-2696. https://doi.org/10.1529/biophysj.107.112615

Yang W., Marr L.C. Mechanisms by which ambient humidity may affect viruses in aerosols. Appl. Environ. Microbiol., 2012, vol. 78, pp. 6781–6788. https://doi.org/10.1128/AEM.01658-12

Vejerano E.P., Marr L.C. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. Royal Soc. Interface., 2018, vol. 15, no 139. – AN 20170939. https://doi.org/10.1098/rsif.2017.0939

Haddrell A.E., Thomas R.J. Aerobiology: Experimental Considerations, Observations, and Future Tools. Appl. Environ. Microbiol., 2017, vol. 83, no 17, e00809-17. https://doi.org/10.1128/AEM.00809-17

Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect., 2020, vol. 104, no 3, pp. 246-251. https://doi.org/10.1016/j.jhin.2020.01.022

Rengasamy A., Zhuang Z., BerryAnn R. Respiratory protection against bioaerosols: Literature review and research needs. Am. J. Infect. Control., 2004, vol. 32, no 6, pp. 345-354. https://doi.org/10.1016/j.ajic.2004.04.199

Shmelkova T.P., Sazanova E.V., Kravtsov A.L., Malyukova T.A., Popov Yu.A., Boiko A.V., Devdariani Z.L., Schukovskaya T.N. Determination of virulence properties of pathogenic microorganisms in vitro: state-of-art. Zh. Mikrobiol. Epidemiol. Immunobiol., 2016, no 6, pp. 100–108. https://doi.org/10.36233/0372-9311-2016-6-100-108 (in Russian)

Tang J.W., Nicolle A.D., Klettner C.A., Pantelic J., Wang L., Suhaimi A.B., Tan A.Y.L., Ong G.W.X., Su R., Sekhar C., Cheong D.D.W, Tham K.W. Airflow Dynamics of Human Jets: Sneezing and Breathing – Potential Sources of Infectious Aerosols. PLoS ONE., 2013, vol. 8, no 4, e59970. https://doi.org/10.1371/journal.pone.0059970

Bourouiba L., Dehandschoewercker E., Bush J.W.M. Violent expiratory events: on coughing and sneezing.J. Fluid Mech., 2014, vol. 745, pp. 537–563. https://doi.org/10.1017/jfm.2014.88

Vasilyak L.M. Physical methods of disinfection (a review). Uspekhi Prikladnoi Fiziki, 2018, vol. 6, no 1, pp.5-17. (in Russian)

Jeong S.B., Ko H.S., Seo S.C., Jung J.H. Evaluation of filtration characteristics and microbial recovery rates of commercial filtering facepiece respirators against airborne bacterial particles. Sci. Total Environ., 2019, vol.682, pp. 729-736. https://doi.org/10.1016/j.scitotenv.2019.05.153

Rao Y., Li H., Shen S., Yang Q., Zhang G., Zhang X., Li M., Duan S. Water vapor condensation on the inner surface of an N95 filtering facepiece respirator. Heat Transfer Res., 2019, vol. 50, no 3, pp. 217-231.https://doi.org/10.1615/heattransres.2018025255

Chughtai A.A., Seale H., MacIntyre C.R. Availability, consistency and evidence-base of policies and guidelines on the use of mask and respirator to protect hospital health care workers: a global analysis. BMC Res. Notes., 2013, vol. 6, no 1, AN 216. https://doi.org/10.1186/1756-0500-6-216

Jafari A.J., Rostami R., Ghainy G. Advance in Bioaerosol Removal Technologies. A Review. Iranian J. Health, Saf. Environ., 2017, vol. 5, no 2, pp. 1007-1016.

Zhmyhov I.N., Gal’brajh L.S., Akulich A.V., Shherbina L.A., Sorokin F.A. Processy i oborudovanie proizvodstva voloknistyh i plenochnyh materialov. Minsk, Vyshjejshaja shkola, 2013, 592 p. (in Russian)

Bukina Ju.A., Sergeeva E.A. Preparaty dlja pridanija voloknistym tekstil’nym materialam antibakterial’nyh svojstv. Bull. Technol. Univ., 2013, vol. 16, no 17, pp. 163-165. (in Russian)

Goldade V., Vinidiktova N. Antimicrobial fibers for textile clothing and medicine: Current state. ISJ Theor.Appl. Sci., 2017, vol. 47, no 3, pp. 178-194. https://dx.doi.org/10.15863/TAS.2017.03.47.27

Chen Z., Sun Y. Antimicrobial polymers containing melamine derivatives. II. Biocidal polymers derived from 2-vinyl-4,6-diamino-1,3,5-triazine. J. Polymer Sci. A: Polymer Chem., 2005, vol. 43, no 18, pp. 4089–4098. https://doi.org/10.1002/pola.20906

Tiller J.C., Lee S.B., Lewis K., Klibanov A.M. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng., 2002, vol. 79, pp. 465–471. https://doi.org/10.1002/bit.10299

Lin J., Tiller J.C., Lee S. B., Lewis K., Klivanov A.M. Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol. Lett., 2002, vol. 24, no 10, pp. 801–805. https://doi.org/10.1023/A:1015584423358

Pasquier N., Keul H., Heine E., Moeller M. From Multifunctionalized Poly(ethylene imine)s toward Antimicrobial Coatings. Biomacromol., 2007, vol. 8, no 9, pp. 2874-2882. https://doi.org/10.1021/bm070353r

Chernov’yants M.S., Burykin I.V., Pisanov R.V., Shalu O.A. Synthesis and antimicrobial activity of poly(Nmethyl- 4-vinylpyridinium triiodide). Pharm. Chem. J., 2010, vol. 44, no 2, pp. 13-15. https://doi.org/10.1007/s11094-010-0398-5

Kenawy E.-R., Abdel-Hay F.I., Shahada L., El-Shanshoury A.E.-R. R., El-Newehy M.H. Biologically active polymers. IV. Synthesis and antimicrobial activity of tartaric acid polyamides. J. Appl. Polymer Sci., 2006, vol.102, no 5, pp. 4780–4790. https://doi.org/10.1002/app.24126

Bozja J., Sherrill J., Michielsen S., Stojiljkovic I. Porphyrin-based, light-activated antimicrobial materials.J. Pol. Sci. A: Polym. Chem., 2003, vol. 41, no 15, pp. 2297-2303. https://doi.org/10.1002/pola.10773

Lyutakov O., Hejna O., Solovyev A., Kalachyova Y., Svorcik V. Polymethylmethacrylate doped with porphyrin and silver nanoparticles as light-activated antimicrobial material. RSC Adv., 2014, vol. 4, no 92, pp. 50624-50630. https://doi.org/10.1039/c4ra08385g

Kononenko A.B., Bannikova D.A., Savinova E.P., Olkhov A.A., Lobanov A.V. Bactericidal properties of the fibrous material based on polyhydroxybutyrate and iron(III)-porphyrins. // Russ. J. Problems Veterinary Sanitation Hyg. Ecol., 2017, no 4, pp. 83-88. (in Russian)

Patel S.A., Patel M.V., Ray A., Patel R.M. Synthesis, characterization, and antimicrobial activity of some novel poly(ether ketone)s. J. Polym. Sci. A: Polym. Chem., 2003, vol. 41, pp. 2335–2344.

Stelmakh S.A., Garkusheva N.M., Ochirov O.S., Grigor’yeva M.N., Stelmakh A.E., Batoev V.B., Mognonov D.M. Synthesis of N-octyland N-Phenyl-substituted (Co)polymers of a Series of Polyalkylguanidines and Their Antimicrobial Activity Towards Conditionally Pathogenic Microorganisms. Chem. Sustainable Dev., 2016, no 6, pp. 795-803. https://doi.org/10.15372/KhUR20160610 (in Russian)

Kenawy E.-R., Worley S. D., Broughton R. The Chemistry and Applications of Antimicrobial Polymers: A Stateof-the-Art Review. Biomacromol., 2007, vol 8, no 5, pp. 1359–1384. https://doi.org/10.1021/bm061150q

Fomin P.A., Lejkin Ju.A., Cherkasova T.A. Issledovanie baktericidnyh ionoobmennyh sorbentov. Uspehi v himii i him. tehnol., 2008, vol. 22, no 13, pp. 10-14 (in Russian)

Dubkova V.I., Solovskiy M.V., Smirnova M.Ju., Panarin E.F., Krutko N.P., Maevskaja O.I., Beljasova N.A. Polymer-composite cellulose and carbon fibrous materials with antimicrobic properties. Proceed. NationalAcad. Sci. Belarus, Med. Ser., 2012, no 3, pp. 97–103. (in Russian)

Poljakova I.V. Zakonomernosti mezhmolekuljarnogo vzaimodejstvija v sisteme antibakterial’nyj antibiotik jeremomicin — polimernye sorbenty. Abstract for the degree of Candidate of Technical Sciences. 030.00.02. St.Petersburg, 2004, 24 p. (in Russian)

Pisarev O.A., Ezhova N.M., Garkushina I.S. The interaction of erythromycin with polymeric sorbents adjusted to the antibiotic molecule. Russ. J. Phys. Chem., 2009, vol. 83, no 1, pp. 142-146. (in Russian)

Toropіn V.M., Kremenchutskiy G.M., Burmіstrov K.S., Shunkevich O.A., Polіkarpov O.P. Synthesis and antibacterial properties of 4-aminophenylsulfonamide immobilized on the polymeric carrier. Pharm. Rev., 2017, no 1, pp. 5-10. (in Ukrainian)

Vigo T.L. Advances in Antimicrobial Polymers and Materials. In Book Biotechnology and Bioactive Polymers. Ed. by C.G. Gebelein, C.E. Carraher. Springer: New York, 1994, pp. 225-237. (in Russian)

Patel M.V., Patel S.A., Ray A., Patel R.M. Antimicrobial activity on the copolymers of 2,4-dichlorophenyl methacrylate with methyl methacrylate: Synthesis and characterization. J. Polym. Sci. A: Polym. Chem., 2004, vol. 42, no 20, pp. 5227–5234. https://doi.org/10.1002/pola.20348

Piozzi A., Francolini I. Biomimetic Polyurethanes. In book: Polymeric Materials with Antimicrobial Activity: From Synthesis to Applications. Ed. by A. Muñoz-Bonilla, M. Cerrada, M. Fernández-García. RSC: Cambridge, 2014, pp. 224-278. https://doi.org/10.1039/9781782624998-00224

Ren X., Kou L., Kocer H.B., Zhu C., Worley S.D., Broughton R.M., Huang T.S. Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization./ Colloids Surf. A: Physicochem. Eng. Aspects., 2008, vol. 317, no 1-3, pp. 711–716. https://doi.org/10.1016/j.colsurfa.2007.12.007

Sokolovskii M.V., Smirnova M.Yu., Tarabukina E.B., Zaharova N.V. Sintez sopolimerov akrilamida s gidrohloridom 3-aminojetilmetakrilata – nositelej biologicheski aktivnyh veshhestv. Zh. Obshch. Khim., 2012, vol. 82, no 10, pp. 1650–1655. (in Russian)

Khorev A.V. Pridanie polijefirnym materialam dezodorirujushhih i antimikrobnyh svojstv s ispol’zovaniem poverhnostnogo modificirovanija volokna. Abstract for the degree of Candidate of Technical Sciences. 05.19.02. Ivanovo, 2010, 16 p. (in Russian)

Rogovin Z.A., Gal’braikh L.S. Chemical Conversions and. Modifications of Cellulose, Moscow, Khimiya, 1979, 205 p. (in Russian)

Virnik A.D. Antimikrobnye celljuloznye voloknistye materialy. Itogi Nauki Tekh., Ser. Khim. Tekhnol. Vysokomolek. Soedin., Moscow, 1986, vol. 21, pp. 35–96. (in Russian)

Moryganov P.A., Galashina V.N., Dymnikova N.S. Study of sorption– desorption processes in modified cellulose materials. Izv. Vyssh. Uchebn. Zaved. Khim. Khim., 2007, vol. 50, no 3, pp. 48-52. (in Russian)

Barysheva N.V. Razrabotka osnov fermentativnoj tehnologii otvarki hlopchatobumazhnyh tkanej. Abstract for the degree of Candidate of Technical Sciences. 05.19.02. Moscow, 2006, 17 p. (in Russian)

Belova A.V., Judanova T.N., Gal’brajh L.S. Poluchenie biologicheski aktivnyh celljuloznyh volokon, modificirovannyh obrabotkoj Ksibetenom-Cel. Khimija Rastitel’nogo Syr’ja, 2010, no 4, pp. 11–15. (in Russian)

Patent US6235302. Int.Cl. A01N 25/34; A61 K9/70; A61 K9/52. Biocide impregnated fiber-reinforced sponge material. Means L., Hammer K.-D. Publ. 22.05.2001

Burkitbaj A., Kutzhanova A.Zh., Tausarova B.R. Razrabotka novoj kompozicii dlja antimikrobnoj otdelki celljuloznogo tekstil’nogo materiala. Aktual’nye problemy gumanitarnyh i estestvennyh nauk., 2010, no 12, pp. 20-23. (in Russian)

Solovskii M.V., Panarin E.F., Smirnova M.Yu., Dubkova V.I., Krut’Ko N.P., Maevskaya O.I., Belyasova N.A. Antimicrobial activity of carbon fiber fabric modified with a polymer-gentamicin complex. Appl. Biochem.Microbiol. 2009, vol. 45, no 2, pp. 248-251. (in Russian)

Solovskii M.V., Eropkin M.Y., Eropkina E.M., Smirnova M.Yu., Gavrilova I.I. Complexes of aminoglycoside antibiotics with copolymers of acrylamide with acrylic and methacrylic acids. Pharm. Chem. J., 2010, vol. 44, no 6, pp. 314-318. https://doi.org/10.1007/s11094-010-0458-x

Smirnova M.Yu. Funkcional’nye polimery na osnove akrilamida, N-(2-gidroksipropil)metakrilamida, ih kompleksy i konjugaty s antibiotikami. Abstract for the degree of Candidate of Chemical Sciences. 02.00.06. St. Petersburg, 2014, 22 p. (in Russian)

Garkushina I.S. Mezhmolekuljarnye vzaimodejstvija v sisteme «antibakterial’nyj antibiotik jeritromicin molekuljarno imprintirovannye polimernye sorbenty». Abstract for the degree of Candidate of Technical Sciences. 03.01.02. St. Petersburg, 2010, 26 p. (in Russian)

Sedov A.V., Goncharov S.F., Kapcov V.A., Ivanov A.A. Primenenie izdelij iz antimikrobnyh tekstil’nyh materialov v medicine. Moscow, Reinfor, 2005, 284 p. (in Russian)

Buzov B.A., Mishakov V.Ju., Makarova N.A., Zameta B.V. Razrabotka i issledovanie antimikrobnyh medicinskih materialov na netkanyh nositeljah. Perspektivnye materialy, 2004, no 4, pp. 58-63. (in Russian)

Makarova H.A., Buzov B.A., Mishakov V.Ju. Antimikrobnoe netkanoe polotno, obrabotannoe preparatom katamin AB + jodistyj kalij. Tehnicheskij tekstil’., 2003, no 5, pp. 29-31. (in Russian)

Tausarova B.R., Rahimova S.M. Cellulosic textile materials with antibacterial properties modified with copper nanoparticles. Chem. Plant Raw Mater.l, 2018, no 1, pp. 163–169. (in Russian)

Gorodnicheva N.A. Izuchenie vozmozhnosti prakticheskogo primenenija polijefirnyh antimikrobnyh volokon dlja izgotovlenija tekstil’nyh materialov, obladajushhih biologicheskoj aktivnost’ju. Vestnik of Vitebsk State Technol. University. 2009, no 16, pp. 17-20. (in Russian)

Gorodnicheva N.A. Biologically active fibrous materials containing antimicrobic polyester fibres. Vestnik of Vitebsk State Technol. University, 2011, no 21, pp. 41-46. (in Russian)

Еnnan A.A., Bajdenko V.I., Zaharenko Ju.S., Gal’brajh L.S., Lishevskaja M.O., Zaharenko V.N. Impregnirovannye sorbcionnoaktivnye voloknistye materialy. Book of 1st Internatonal Science-Practical Conference «Protection of Environment, Health, and Safety in Welding» (Odessa, 11-13 September 2002), Odessa, Astroprint, 2002, pp. 218-230. (in Russian)

Ennan A.A., Baidenko V.I. Sorbcionno fil’trujushhie voloknistye ionity dlja individual’noj protivogazovoj zashhity (Obzor). Jenergotehnologii i resursosberezhenie, 2004, no 5, pp. 43-54. (in Russian)

Ennan A.A.-A., Zakharenko Yu.S., Abramova N.N., Chechetov M.O. Compound for impregnation of filtering material. Patent UA, no 43409, publ. 10.08.2009. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Shevtsova N.I., Koroieva L.V., Gelmboldt V.O. Composition for Impregnation of Filter Material. Patent UA, no 73387, publ. 25.09.2012. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N. Composition for Impregnation of Filter Material. Patent UA, no 85878, publ. 10.12.2013. (in Ukrainian)

Ennan A.А., Dlubovskiy R.M., Abramova N.N., Khoma R.E. Chemisorption of Sulfur Dioxide by Polyethylenepolyamine Impregnated Fibrous Materials. 2. The Study of Water Vapor Influence on Preadsorbtion SO2 Chemisorption by Fibrous Materials. Visn. Odes. nac. univ., Him., 2014, vol. 19, no 3, pp. 20-30. http://dx.doi.org/10.18524/2304-0947.2014.3(51).40356 (in Russian)

Ennan A.-A.-A, Khoma R.E. Impregnated Fibrous Chemosorbents of Acid Gases For Respiratory Purpose. Visn.Odes. nac. univ., Him., 2017, vol. 22, no 4, pp. 53-68. https://doi.org/10.18524/2304-0947.2017.4(64).115924 (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Grіdjaev V.V. Іmpregnovanі voloknistі hemosorbenti oksidu sіrki (IV) і/abo amіaku respіratornogo priznachennja. V Mіzhnarodna naukovo-praktichna konferenciya «Bezpeka zhittєdіjal’nostі na transportі ta virobnictvі – osvіta, nauka, praktika», Kherson. 13-15 September 2018, pp. 65-69. (in Ukrainian)

Anurova M.N., Bakhrushina E.O., Demina N.B., Panteleeva E.S. Modern Preservatives of Microbiological Stability (Review). Pharm. Chem. J., 2019, vol. 53, no 6, pp. 564-571. https://doi.org/10.1007/s11094-019-02038-4

Bakalova S., Mincheva V., Doycheva A., Groudeva V., Dimkov R. Microbial Toxicity of Ethanolamines. Biotechnol. Biotechnol. Equip., 2008, vol 22, no 2, pp. 716–720. https://doi.org/10.1080/13102818.2008.10817540

Ismail Hossain M., El-Harbawi M., Noaman Y.A., Bustam M.A.B., Alitheen N.B.M., Affandi N.A., Hefter G., Yin C.-Y. Synthesis and anti-microbial activity of hydroxylammonium ionic liquids. Chemosphere, 2011, vol.84, no 1, pp. 101–104. https://doi.org/10.1016/j.chemosphere.2011.02.048

Petrović Z.D., Čomić L., Stefanović O., Simijonović D., Petrović V.P. Antimicrobial activity of the ionic liquids triethanolamine acetate and diethanolamine chloride, and their corresponding Pd(II) complexes. J. Mol. Liq.,2012, vol. 170, pp. 61–65. https://doi.org/10.1016/j.molliq.2012.03.009

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N. Composition for Impregnation of Filter Material. Patent UA, no 113021, publ. 10.01.2017. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Galak A.V., Dlubovskiу R.M., Abramova N.N. Composition for Impregnating Filter Materials. Patent UA, no 115533, publ. 25.04.2017 (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Zakharenko Yu.S., Abramova N.N. Impregnating composition for obtaining chemisorbent-ampholyte. Zajavka UA, no u201704020, decl. 24.04.2017. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Zakharenko Yu.S., Abramova N.N. Composition for Impregnating Filter Materials. Patent UA, no 121424, publ. 11.12.2017 (in Ukrainian)

Minami M., Ando T., Hashikawa S.-n., Torii K., Hasegawa T., Israel D.A., Ina K., Kusugami K., Goto H., Ohta M. Effect of Glycine on Helicobacter pylori In Vitro. Antimicrob. Agents Chemother., 2004, vol. 48, no 10, pp. 3782–3788. https://doi.org/10.1128/AAC.48.10.3782-3788.2004

Finnegan S., Percival S.L. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Adv. Wound Care., 2015, vol. 4, no 7, pp. 415–421. https://doi.org/10.1089/wound.2014.0577

Thurman R.B., Gerba C.P., Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Env. Control., 1989, vol. 18, no 4, pp. 295-315.

Vincent M., Hartemann P., Engels-Deutsch M. Antimicrobial applications of copper. Int. J. Hyg. Env. Health., 2016, vol. 219, no 7, pp. 585–591. http://dx.doi.org/10.1016/j.ijheh.2016.06.003

Gordon N.A., McGuire K.L., Wallentine S.K., Mohl G.A., Lynch J.D., Harrison R.G., Busath D.D. Divalent copper complexes as influenza A M2. Antiviral Res., 2017, vol. 147, pp. 100-106. https://doi.org/10.1016/j.antiviral.2017.10.009

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N. Composition for Impregnating Filter Materials. Patent UA, no 113022, publ. 10.01.2017 (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Gridyaev V.V., Mikhaylova T.V. Fibrous Chemisorbent of Sulfur Dioxide Based on the Complex Compounds of Cooper (II) Sulphate and Polyethylenepolyamine. Visn. Odes.nac. univ., Him., 2018, vol. 23, no 2, pp. 95-105. http://dx.doi.org/10.18524/2304-0947.2018.2(66).132053 (in Russian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N. Composition for Impregnation of Filter Material. Patent UA, no 121423, publ. 11.12.2017. (in Ukrainian)

Kulikov S.N., Tiurin Ju.A., Fassakhov R.S., Varlamov V.P. Antibacterial and antimycotic activity of chitosan: mechanisms of action and role of the structure. Zh. Mikrobiol. Epidemiol. Immunobiol., 2009, no 5, pp. 91-97. (in Russian)

Ennan A.A.-A., Khoma R.E., Zakharenko Yu.S.., Abramova N.N. Composition for Impregnation of Filter Material. Patent UA, no 127588, publ. 10.08.2018. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Galak A.V., Zakharenko Yu.S., Abramova N.N. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 115534, publ. 25.04.2017 (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Zakharenko Yu.S.., Abramova N.N., Gridyaev V.V. Composition for Impregnation of Filter Material. Patent UA, no 129785, publ. 12.11.2018. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Zakharenko Yu.S.., Abramova N.N. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 124684, publ. 25.04.2018 (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Zakharenko Yu.S.., Abramova N.N. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 139054, publ. 26.12.2019 (in Ukrainian)

Ennan A.A.-A., Dlubovskiу R.M., Khoma R.E., Abramova N.N., Naumchak V.A. Composition for the Filter Material Impregnation. Patent UA, no 96010, publ. 12.01.2015 (in Ukrainian)

Khoma R.E., Ennan A.А., Dlubovskiy R.M., Abramova N.N. Fibrous Chemisorbents-Ampholyte Based on the Complex Compound of Nickel(II) Chloride and Monoethanolamine. Visn. Odes. nac. univ., 2016, vol. 21, no 1, pp. 92–101. http://dx.doi.org/10.18524/2304-0947.2016.1(57).67515 (in Russian)

Ennan A.A.-A., Homa R.Є., Dlubovs’kij R.M., Abramova N.M., Manzhos A.A. Hemosorbenti-amfolіti na osnovі kompleksnih spoluk 3d-metalіv іz N-vmіsnimi organіchnimi osnovami. VI Mіzhnarodna naukovopraktichna konferenciya «Bezpeka zhittєdіjal’nostі na transportі ta virobnictvі – osvіta, nauka, praktika», Kherson. 11-14 September 2019, pp. 129-132. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Abramova N.N., Dlubovskiу R.M., Gusel’nikova N.O. Composition for Impregnating Filter Materials. Patent UA, no 107184, publ. 25.05.2016 (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Zakharenko Yu.S., Abramova N.N. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 139792, publ. 27.01.2020 (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N., Mikhaylova T.V. Fibrous Chemisorbent-Amfolite Based on the Complex Compounds of Nickel (II) Chloride and Ethylenediamine. Visn. Odes. nac. univ., Him., 2019, vol. 24, no 3, pp. 90-102. https://doi.org/10.18524/2304-0947.2019.3(71).177739 (in Russian)

Greenwood D., Slack R.C.B. The antibacterial activity of hexamine (methenamine), hexamine hippurate and hexamine mandelate. Infection., 1981, vol. 9, pp. 223–227.

Agwara M.O., Yufanyi M.D., Foba-Tendo J.N., Atamba M.A., Ndinteh D.T. Synthesis, characterisation and biological activities of Mn(II), Co(II) and Ni(II) complexes of hexamethylenetetramine. J. Chem. Pharm. Res., 2011, vol. 3, no 3, pp. 196-204.

Arzybaev M., Imanaliev M.I., Altybaeva D.T., Toktomatov T.A. Toksicheskie svojstva i antibakterial’naja aktivnost’ soedinenij geksametilentetramina. Veterinarnaja patologija. 2003, no 3, pp. 85-87. (in Russian)

Zardini H.Z., Davarpanah M., Shanbedi M., Amiri A., Maghrebi M., Ebrahimi L. Microbial toxicity of ethanolamines-Multiwalled carbon nanotubes. J. Biomed. Mater. Res. A, 2013, vol. 102, no 6, pp. 1774–1781. https://doi.org/10.1002/jbm.a.34846

Dmitrieva N.A., Krechina E.K., Jarygina L.B., Efremova N.V. Comparative evaluation of antimicrobial activity of root canal irrigation agents. Stomatologiya, 2013, vol. 92, no 5, pp. 9-11. (in Russian)

Horie M., Ogawa H., Yoshida Y., Yamada K., Hara A., Ozawa K., Matsuda S., Mizota C., Tani M., Yamamoto Y., Yamada M., Nakamura K., Imai K. Inactivation and morphological changes of avian influenza virus by copper ions. Arch. Virol., 2008, vol. 153, an 1467. https://doi.org/10.1007/s00705-008-0154-2

Komal N., Sujatha I., Jayalakshmi K.B., Arul S.K., Prasannalatha N. Comparative Evaluation Of Antimicrobial Activity Of Different Root Canal Irrigants With Or Without The Addition Of Etidronic Acid. World J. Adv. Sci. Res., 2019, vol. 2, no 5, pp. 1-11.

Bischof Vukušić S., Flinčec Grgac S., Budimir A., Kalenić S. Cotton textiles modified with citric acid as efficient anti-bacterial agent for prevention of nosocomial infections. Croatian Med. J., 2011, vol. 52, no 1, pp. 68–75. https://doi.org/10.3325/cmj.2011.52.68

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 116964, publ. 25.05.2018. (in Ukrainian)

Ennan A.A.-A., Dlubovskiу R.M., Khoma R.E., Abramova N.N., Berezovska T.I. Composition for Impregnating Filter Materials. Patent UA, no 112848, publ. 10.11.2016. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 133964, publ. 25.04.2019. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N., Gridyaev V.V. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 135209, publ. 25.06.2019. (in Ukrainian)

Ennan A.A.-A., Khoma R.E., Dlubovskiу R.M., Abramova N.N., Gridyaev V.V. Impregnated Composition for Obtaining Chemosorbent-Ampholyte. Patent UA, no 142208, publ. 25.05.2020. (in Ukrainian)

Kuznetsov D.N., Kobrakov K.I., Ruchkina A.G., Stankevich G.S. Biologically active synthetic organic dyes. Izv. Vyssh. Uchebn. Zaved. Khim. Khim., 2017, vol. 60, no 1, pp. 4-33. https://doi.org/10.6060/tcct.2017601.5423 (in Russian)

Wang Q.Z., Chen X.G., Liu N., Wang S.X., Liu C.S., Meng X.H., Liu C.G. Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr. Polym., 2006. vol. 65, no 2, pp. 194–201. https://doi.org/10.1016/j.carbpol.2006.01.001

Haldar J., Weight A.K., Klibanov A.M. Preparation, application and testing of permanent antibacterial and antiviral coatings. Nature Prot., 2007, vol. 2, no 10, pp. 2412–2417. https://doi.org/10.1038/nprot.2007.353

Rajkowska K., Koziróg A., Otlewska A., Piotrowska M., Nowicka-Krawczyk P., Brycki B., Kunicka-Styczyńska A., Gutarowska B. Quaternary ammonium biocides as antimicrobial agents protecting historical wood and brick. Acta Biochim. Pol., 2015, vol. 63, no 1, pp. 153–159. https://doi.org/10.18388/abp.2015_1134

Tischer M., Pradel G., Ohlsen K., Holzgrabe U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? Chem. Med. Chem., 2011, vol. 7, no 1, pp. 22–31. https://doi.org/10.1002/cmdc.201100404

Jiao Y., Niu L., Ma S., Li J., Tay F.R., Chen J. Quaternary ammonium-based biomedical materials: State-of-theart, toxicological aspects and antimicrobial resistance. Progr. Polym. Sci., 2017, vol. 71, pp. 53–90. https://doi.org/10.1016/j.progpolymsci.2017.03.001

Khoma R.E., Baumer V.N., Ennan A.A, Antonenko P.B., Godovan V.V., Dlubovskiy R.M. Synthesis, crystal structure, and spectral characteristics of N-(n-propyl)aminomethanesulfonic acid. Acute toxicity of aminomethanesulfonic acid and its N-alkylated derivatives. Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, no 6, pp. 255-262. https://doi.org/10.32434/0321-4095-2019-127-6-255-262.

Hridіna T.L., Khoma R.E., Ennan A.A-A., Fedchuk A.S., Gruzevskiy O.A. Investigations of the antimicrobial activity of aminomethanesulfonic acids against strains of Staphylococcus aureus with different levels of antibiotic sensitivity. Zaporozhye Med. J., 2019, vol. 21, no 2, pp. 234-239. https://doi.org/10.14739/2310-1210.2019.2.161502 (in Ukrainian)

Khoma R.E., Ennan А.А., Gridina T.L., Fedchuk A.S., Lozitskiy V.P., Rakipov I.M., Vladika А.S. Synthesis, antioxidant and anti-influenza activity of aminomethanesulphonic acids. Pharm. Chem. J., 2019, vol. 53, no 5, pp. 436-439. https://doi.org/10.1007/s11094-019-02016-w

Khoma R.E.., Ennan A.A.-A., Chebotaryov A.N., Vodzinskii S.V. Aminomethansulfonic and alkylaminomethansulfonic buffer systems. // Ukr. Chem. J., 2019, vol. 85, no 9, pp. 3-16. https://doi.org/10.33609/0041-6045.85.9.2019.3-16 (in Russian)

Almeida A., Cunha A., Faustino M.A.F., Tomé A.C., Neves M.G.P.M.S. Porphyrins as antimicrobial photosensitizing agents. In Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications. Hamblin M.R., Jori G., Eds., Royal Society of Chemistry, Cambridge, UK, 2011, pp. 83–160.

##submission.downloads##

Опубліковано

2020-09-11

Як цитувати

Ennan, A. A., Khoma, R. E., Dlubovskii, R. M., Abramova, N. N., & Vodzinskiy, S. V. (2020). ANTIMICROBIAL AND ANTIVIRAL RESPIRATORY MATERIALS. Вісник Одеського національного університету. Хімія, 25(3(75), 6–32. https://doi.org/10.18524/2304-0947.2020.3(75).211712

Номер

Розділ

Статті