DOI: https://doi.org/10.18524/2304-0947.2018.4(68).147812

КРИПТОМЕЛАН, МОДИФІКОВАНИЙ ІОНАМИ ПЕРЕХІДНИХ МЕТАЛІВ: СТРУКТУРА ТА КАТАЛІТИЧНА АКТИВНІСТЬ В РЕАКЦІЇ РОЗКЛАДАННЯ ОЗОНУ

T. L. Rakitskaya, A. S. Truba, A. V. Nagaevs’ka

Анотація


За реакцією відновлення KMnO4 хлоридом Mn(ІІ) або сульфатом Mn(II) методом зворотного холодильника (reflux method) синтезовані зразки криптомелану (ОМS-2) та криптомелану модифікованого іонами перехідних металів (M/OMS-2; M = Cu2+, Co2+, Fe3+). Зразки охарактеризовані методами РФА, ІЧ-спектроскопії та протестовані в реакції розкладання озону. Каталітична активність зразків M/OMS-2 залежить від природи іону металу та змінюється наступним чином Со/OMS-2>OMS-2>Cu/OMS-2>Fe/OMS-2.


Ключові слова


криптомелан; перехідні метали; озон

Повний текст:

PDF

Посилання


Wang R.,Li J. OMS-2 catalysts for formaldehyde oxidation: effects of Ce and Pt on structure and performance of the catalysts. Catal. Lett., 2009, vol. 131, no 3-4, pp. 500-505. https://doi.org/10.1007/s10562-009-9939-5

Sun M., YuL., YeF., Diao G., YuQ., Hao Z., Zheng Y., Yuan L. Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem. Eng. J., 2013, vol. 220, pp. 320-327. https://doi.org/10.1016/j.cej.2013.01.061

Tian H., HeJ., Liu L., Wang D. Effects of textural parameters and noble metal loading on the catalyt activity of cryptomelane-type manganese oxides for formaldehyde oxidation. Ceram. Int., 2013, vol. 39, no 1, pp. 315-321. https://doi.org/10.1016/j.ceramint.2012.06.027

Prabu M., Ramalingam K. Environmentally benign, recyclable nano hollandite and metal intercalated nano hollandites for hydrogen sulfide removal. RSC Adv., 2015, vol. 5, pp. 18554-18564. http://dx.doi.org/10.1039/C4RA14714F

Vasconcellos C.M., Gonçalves M.L.A., Pereira M.M., Carvalho N.M.F. Iron doped manganese oxide octahedral molecular sieve as potential catalyst for SOx removal at FCC. Appl. Catal. A, 2015, vol. 498, pp. 69-75. https://doi.org/10.1016/j.apcata.2015.01.030

Gac W., Giecko G., Pasieczna-Patkowska S., Borowiecki T., Kępiński L. The influence of silver on the properties of cryptomelane type manganese oxides in N2O decomposition reaction. Catal. Today, 2008, vol. 137, no 2-4, pp. 397-402. https://doi.org/10.1016/j.cattod.2007.11.008

Carabineiro S.A.C., Santos V.P., Pereira M.F.R., Órfão J.J.M., Figueiredo J.L. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials. J. Colloid Interface Sci., 2016, vol. 480, pp. 17-29. https://doi.org/10.1016/j.jcis.2016.06.072

Hernández W.Y., Centeno M.A., Romero-Sarria F., Ivanova S., Montes M., Odriozola J. A. Modified cryptomelane-type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of hydrogen. Catal. Today, 2010, vol. 157, no 1-4, pp. 160-165. https://doi.org/10.1016/j.cattod.2010.03.010

Santos V.P., Carabineiro S.A.C., Bakker J.J.W., Soares O.S.G.P., Chen X., Pereira M.F.R., Órfão J.J.M., Figueiredo J.L., Gascon J., Kapteijn F. Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. J. Catal., 2014, vol. 309, pp. 58-65. https://doi.org/10.1016/j.jcat.2013.08.030

Özacar M., Poyraz A.S., Genuino H.C., Kuo C.-H., Meng Y., Suib S.L. Influence of Silver on the Catalytic Properties of the Cryptomelane and Ag-Hollandite Types Manganese Oxides OMS-2 in the Low-Temperature CO Oxidation. Appl. Catal. A, General., 2013, vol. 462-463, pp. 64-74. https://doi.org/10.1016/j.apcata.2013.04.027

Jia J., Zhang P., Chen L. Catalytic decomposition of gaseous ozone over manganese dioxideswith different crystal structures. Appl. Catal. B: Environ., 2016, vol. 189, pp. 210-218. https://doi.org/10.1016/j.apcatb.2016.02.055

Wang C., Ma J., Liu F., He H., Zhang R. The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts. J. Phys. Chem. C, 2015, vol.119, no 40, pp. 23119-23126. https://doi.org/10.1021/acs.jpcc.5b08095

Rakitskaya T.L., Truba A.S., Nagaevs’ka A.V. Synthesis and catalytic activity of dispersed manganese(IV) oxides in the reaction of ozone decomposition. Visn. Odes. nac. univ. Him., 2017, vol. 22, no 4, pp. 6-14. http://dx.doi.org/10.18524/2304-0947.2017.4(64).115916 (in Russian)

Ma J., Wang C., He H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl. Catal. B: Environ., 2017, vol. 201, pp. 503-510. https://doi.org/10.1016/j.apcatb.2016.08.050

Rakitskaya T.L., Truba A.S., Raskоla L.A. Catalysts based on chlorides of 3d metals and natural sorbents for low-temperature ozone oxidation. Scientific Notes of Taurida V.I. Vernadsky National University: Biology, chemistry. 2013, vol. 26 (65), no 4, pp. 358-371. (in Russian)

Rakitskaya T., Truba A., Ennan A., Volkova V. Nanostructured polyphase catalysts based on the solid component of welding aerosol for ozone decomposition. Nanoscale Res. Lett., 2015, vol. 10, 473 (10 р). https://doi.org/10.1186/s11671-015-1186-7

Rakitskaya T.L., Truba A.S., Ennan A.A., Baumer V.N., Volkova V.Y. Synthesis and catalytic properties of iron oxides in the reaction of low-temperature ozone decomposition. Acta Phys. Pol. A, 2018, vol. 133, no 4, pp. 1079-1083. https://doi.org/10.12693/APhysPolA.133.1079


Пристатейна бібліографія ГОСТ


1. Wang R., LiJ. OMS-2 catalysts for formaldehyde oxidation: effects of Ce and Pt on structure and performance of the catalysts // Catal. Lett. – 2009. – Vol. 131, N 3-4. – P. 500-505. https://doi.org/10.1007/s10562-009-9939-5

2. Sun M., YuL., YeF., Diao G., YuQ., Hao Z., Zheng Y., Yuan L. Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether // Chem. Eng. J. – 2013. –Vol. 220. – P. 320-327. https://doi.org/10.1016/j.cej.2013.01.061

3. Tian H., HeJ., Liu L., Wang D. Effects of textural parameters and noble metal loading on the catalytic activity of cryptomelane-type manganese oxides for formaldehyde oxidation // Ceram. Int. – 2013. – Vol. 39, N 1. – P. 315-321. https://doi.org/10.1016/j.ceramint.2012.06.027

4. Prabu M., Ramalingam K. Environmentally benign, recyclable nano hollandite and metal intercalated nano hollandites for hydrogen sulfide removal // RSC Adv. – 2015. – Vol. 5. – P. 18554-18564. http://dx.doi.org/10.1039/C4RA14714F

5. Vasconcellos C.M., Gonçalves M.L.A., Pereira M.M., Carvalho N.M.F. Iron doped manganese oxide octahedral molecular sieve as potential catalyst for SOx removal at FCC // Appl. Catal. A. – 2015. – Vol. 498. – P. 69-75. https://doi.org/10.1016/j.apcata.2015.01.030

6. Gac W., Giecko G., Pasieczna-Patkowska S., Borowiecki T., Kępiński L. The influence of silver on the properties of cryptomelane type manganese oxides in N2O decomposition reaction // Catal. Today. – 2008. – Vol. 137, N 2-4. – P. 397-402. https://doi.org/10.1016/j.cattod.2007.11.008

7. Carabineiro S.A. C., Santos V.P., Pereira M.F.R., Órfão J.J.M., Figueiredo J.L. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials // J. Colloid Interface Sci. – 2016. – Vol. 480. – P. 17-29. https://doi.org/10.1016/j.jcis.2016.06.072

8. Hernández W.Y., Centeno M.A., Romero-Sarria F., Ivanova S., Montes M., Odriozola J.A. Modified cryptomelane- type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of hydrogen // Catal. Today. – 2010. – Vol. 157, N 1-4. – P. 160-165. https://doi.org/10.1016/j.cattod.2010.03.010

9. Santos V.P., Carabineiro S.A. C., Bakker J.J.W., Soares O.S.G.P., Chen X., Pereira M.F.R., Órfão J.J.M., Figueiredo J.L., Gascon J., Kapteijn F. Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation // J. Catal. – 2014. – Vol. 309. – P. 58-65. https://doi.org/10.1016/j.jcat.2013.08.030

10. Özacar M., Poyraz A. S., Genuino H.C., Kuo C.-H., Meng Y., Suib S.L. Influence of Silver on the Catalytic Properties of the Cryptomelane and Ag-Hollandite Types Manganese Oxides OMS-2 in the Low-Temperature CO Oxidation // Appl. Catal. A, General. – 2013. – Vol. 462-463. – P. 64-74. https://doi.org/10.1016/j.apcata.2013.04.027

11. Jia J., Zhang P., Chen L. Catalytic decomposition of gaseous ozone over manganese dioxideswith different crystal structures // Appl. Catal. B: Environ. – 2016. – Vol. 189. – P. 210-218. https://doi.org/10.1016/j.apcatb.2016.02.055

12. Wang C., Ma J., Liu F., He H., Zhang R. The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts // J. Phys. Chem. C. – 2015. – Vol. 119, N 40. – P. 23119-23126. https://doi.org/10.1021/acs.jpcc.5b08095

13. Ракитська Т.Л., Труба А.С., Нагаєвська А.В. Синтез та каталітична активність дисперсних оксидів мангану(ІV) в реакції розкладання озону // Вісн. Одеськ. нац. ун-ту. Хімія. – 2017. – Т. 22, № 4. – С. 6-14. http://dx.doi.org/10.18524/2304-0947.2017.4(64).115916

14. Ma J., Wang C., He H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition // Appl. Catal. B: Environ. – 2017. – Vol. 201. – P. 503-510. https://doi.org/10.1016/j.apcatb.2016.08.050

15. Ракитская Т.Л., Труба А.С., Раскола Л.А. Катализаторы низкотемпературного разложения озона на основе хлоридов 3d-металлов и природных сорбентов // Вчені записки Таврійського національного університету імені В.І. Вернадського. Серія: Біологія, хімія. 2013 – Т. 26 (65), № 4. – С. 358-371.

16. Rakitskaya T., Truba A., Ennan A., Volkova V. Nanostructured polyphase catalysts based on the solid component of welding aerosol for ozone decomposition // Nanoscale Res. Lett. – 2015. – Vol. 10. – 473 (10 р). https://doi.org/10.1186/s11671-015-1186-7

17. Rakitskaya T.L., Truba A.S., Ennan A.A., Baumer V.N., Volkova V.Y. Synthesis and catalytic properties of iron oxides in the reaction of low-temperature ozone decomposition // Acta Phys. Pol. A. – 2018. – Vol. 133, N 4. – P. 1079-1083. https://doi.org/10.12693/APhysPolA.133.1079





Creative Commons License
Ця робота ліцензована Creative Commons Attribution-ShareAlike 4.0 International License.