АФІНІТЕТ НОВИХ ПОТЕНЦІЙНИХ ЛІГАНДІВ ГАМКА-РЕЦЕПТОРНОГО КОМПЛЕКСУ ТА TSPO РЕЦЕПТОРІВ ЦНС – цис-3-АРИЛІДЕН-7-БРОМ-5-АРИЛ-1,2-ДИГІДРО-3Н-1,4-БЕНЗОДІАЗЕПІН-2-ОНІВ

Автор(и)

  • Н. О. Буренкова Фізико-хімічний інститут ім. О. В. Богатського Національної академії наук України, Україна
  • С. Ю. Бачинський Фізико-хімічний інститут ім. О. В. Богатського Національної академії наук України, Україна

DOI:

https://doi.org/10.18524/2304-0947.2025.1(89).335206

Ключові слова:

3-ариліден-1,2-дигідро-3Н-1,4-бензодіазепін-2-они, афінітет, бензодіазепіни, ГАМКА-рецепторний комплекс (ГАМКАР), периферичні бензодіазепінові рецептори (ПБДР), центральні бензодіазепінові рецептори (ЦБДР), TSPO рецептори

Анотація

З метою вивчення зв’язку структура-афінітет лігандів ГАМКА-рецепторного комплексу (ГАМКАР) та TSPO рецепторів ЦНС синтезовано ряд нових цис-3-ариліден-7-бром-5-арил-1,2-дигідро-3Н-1,4-бензодіазепін-2-онів (3–11). Методом радіолігандного аналізу в експериментах in vitro вивчено афінітет синтезованих сполук до ГАМКАР та TSPO рецепторів ЦНС.

Посилання

International Union of Pharmacology. XV. Subtypes of γ-Aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function / E. A. Barnard, P. Skolnick, R. W. Olsen, H. Mohler, W. Sieghart, G. Biggio, C. Braestrup, A. N. Bateson, S. Z. Langer. Pharmacol. Rev. 1998. Vol. 50, no. 2(2). P. 291–313. https://doi.org/10.1124/pr.108.00505

Jensen M. L., Schousboe A., Ahring P. K. Charge selectivity of the Cys-loop family of ligand gated ion channels. J. Neurochem. 2005. Vol. 92. P. 217–225. https://doi.org/10.1111/j.1471-4159.2004.02883.x

Corringer P. J., Novère N. L., Changeux J. P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 2000. Vol. 40. P. 431–458. https://doi.org/10.1146/annurev.pharmtox.40.1.431

Breitinger H. G., Becker C. M. The inhibitory glycine receptor-simple views of a complicated channel. Chembiochem. 2002. Vol. 3. P. 1042–1053. https://doi.org/10.1002/1439-7633(20021104)3:11%3C1042::aid-cbic1042%3E3.0.co;2-7

A novel class of ligand- gated ion channel is activated by Zn2+ / P. A. Davies, W. Wang, T. G. Hales, E. F. Kirkness. J. Biol. Chem. 2003. Vol. 278. P. 712–717. https://doi.org/10.1074/jbc.M208814200

Thompson A. J., Lummis S. C. R. 5-HT3 receptors. Curr. Pharm. Des. 2006. Vol. 12. P. 3615–3630. https://doi.org/10.2174/138161206778522029

Acetylcholine receptor: complex of homologous subunits / M. A. Raftery, M. W. Hunkapiller, C. D. Strader, L. E. Hood. Sci. 1980. Vol. 208. P. 1454–1456. https://doi.org/10.1126/science.7384786

Acetylcholine receptor: complex of homologous subunits / N. Nayeem, T. Green, I. L. Martin, E. A. Barnard. J. Neurochem. 1994. Vol. 62. P. 815–818. https://doi.org/10.1016/S0006-3495(99)77390-X

Enigma of the peripheral benzodiazepine receptor / M. Gavish, I. Bachman, R. Shoukrun, Y. Katz, L. Veenman, G. Weisinger, A. Weizman. Pharmacol. Rev. 1999. Vol. 51. P. 629–650. https://doi.org/10.1016/S0031-6997(24)01424-8

Casellas P., Galiegue S., Basile A. S. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem. Int. 2002. Vol. 40. P. 475–468. https://doi.org/10.1016/S0197-0186(01)00118-8

Gavish M., Veenman L.. Regulation of mitochondrial, cellular, and organismal functions by TSPO. Adv. Pharmacol. 2018. Vol. 82. P. 103–136. https://doi.org/10.1016/bs.apha.2017.09.004

Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function / V. Papadopoulos, M. Baraldi, T. R. Guilarte, T. B. Knudsen, J.-J. Lacapère, P. Lindemann, M. D. Norenberg, D. Nutt, A. Weizman, M.-R. Zhang, M. Gavish. Trends Pharmacol. Sci. 2006. Vol. 27, no. 8. P. 402–409. https://doi.org/10.1016/j.tips.2006.06.005

Lacapère J.-J., Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids. 2003. Vol. 68. P. 569–585. https://doi.org/10.1016/S0039-128X(03)00101-6

Veenman L., Papadopoulos V., Gavish M. Channel-like functions of the 18-kDa translocator protein (TSPO): regulation of apoptosis and steroidogenesis as part of the host-defense response. Curr. Pharm. Des. 2007. Vol. 13. P. 2385–2405. https://doi.org/10.2174/138161207781368710

Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor / N. Jamin, J.-M. Neumann, M. A. Ostuni, T. K. Ngoc-Vu, Z.-X. Yao, S. Murail, J. C. Robert, C. Giatzakis, V. Papadopoulos, J.-J. Lacapère. Mol. Endocrinol. 2005. Vol. 19. P. 588–594. https://doi.org/10.1210/me.2004-0308

Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders / V. Papadopoulos, L. Lecanu, R. C. Brown, Z. Han, Z.-X. Yao. Neurosci. 2006. Vol. 138. P. 749–756. https://doi.org/10.1016/j.neuroscience.2005.05.063

Wu F., Gibbs T. T., Farb D. H. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 1991. Vol. 40. P. 333–336. https://doi.org/10.1016/S0026-895X(25)12923-4

Stimulation of brain pregnenolone synthesis by mitochondrial diazepam binding inhibitor receptor ligands in vivo / A. Korneyev, B. S. Pan, A. Polo, E. Romeo, A. Guidotti, E. Costa. J. Neurochem. 1993. Vol. 61. P. 1515–1524. https://doi.org/10.1111/j.1471-4159.1993.tb13647.x

The pharmacology of neurosteroidogenesis / E. Costa, J. Auta, A. Guidotti, A. Korneyev, E. Romeo. J. Steroid. Biochem. Mol. Biol. 1994. Vol. 49. P. 385–389. https://doi.org/10.1016/0960-0760(94)90284-4

Structure-activity relationships and effects on neuroactive steroid synthesis in a series of 2-phenylimidazo[1,2-a]pyridineacetamide peripheral benzodiazepine receptors ligands / G. Trapani, V. Laquintana, N. Denora, A. Trapani, A. Lopedota, A. Latrofa, M. Franco, M. Serra, M. P. Giuseppina, I. Floris, E. Sanna, G. Biggio, G. Liso. J. Med. Chem. 2005. Vol. 48. P. 292–305. https://doi.org/10.1021/jm049610q

Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat / D. Bitran, M. Foley, D. Audette, N. Leslie, C. A. Frye. Psychopharm. (Berl.). 2000. Vol. 151. P. 64–71. https://doi.org/10.1007/s002130000471

The translocator protein (18 kDa) and its role in neuropsychiatric disorders / T. Barichello, L. R. Simoes, A. Collodel, V. V. Giridharan, F. Dal-Pizzol, D. Macedo, J. Quevedo. Neurosci. Biobehav. Rev. 2017. Vol. 83. P. 183–199. https://doi.org/10.1016/j.neubiorev.2017.10.010

Upregulation of ‘peripheral-type’ benzodiazepine receptors in the globus pallidus in a sub-acute rat model of manganese neurotoxicity / A. S. Hazell, L. Normandin, B. Nguyen, G. Kennedy. Neurosci. Lett. 2003. Vol. 349. P. 13–16. https://doi.org/10.1016/S0304-3940(03)00649-9

Meßmer K., Reynolds G. P. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington´s disease. Neurosci. Lett. 1998. Vol. 241. P. 53–56. https://doi.org/10.1016/S0304-3940(97)00967-1

The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Quantitative in vivo imaging of glia of microglia as a measure of disease activity / R. B. Banati, J. Newcombe, R. N. Gunn, A. Cagnin, F. Turkheimer, F. Heppner, G. Prince. Brain. 2000. Vol. 123. P. 2321–2337. https://doi.org/10.1093/brain/123.11.2321

Katz Y., Eitan A., Gavish M. Increase in peripheral benzodiazepine binding sites in colonic adenocarcinoma. Oncology. 1990. Vol. 47. P. 139–142. https://doi.org/10.1159/000226806

Peripheral-type benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines / L. Veenman, E. Levin, G. Weisinger, S. Leschiner, I. Spanier, S. H. Snyder, A. Weizman, M. Gavish. Biochem. Pharmacol. 2004. Vol. 68. P. 689–698. https://doi.org/10.1016/j.bcp.2004.05.011

Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol / M. Hardwick, D. Fertikh, M. Culty, H. Li, B. Vidic, V. Papadopoulos. Cancer Res. 1999. Vol. 59. P. 831–842.

Weissman B. A., Raveh L. Peripheral benzodiazepine receptors: on mice and human brain imaging. J. Neurochem. 2003. Vol. 84. P. 432–437. https://doi.org/10.1046/j.1471-4159.2003.01568.x

Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain / M.-R. Zhang, J. Maeda, M. Ogawa, J. Noguchi, T. Ito, Y. Yoshida, T. Okauchi, S. Obayashi, T. Suhara, K. Suzuki. J. Med. Chem. 2004. Vol. 47. P. 2228–2235. https://doi.org/10.1021/jm0304919

Synthesis and characterization of a platinum (II) complex tethered to a ligand of the peripheral benzodiazepine receptor / N. Margiotta, R. Ostuni, R. Ranaldo, N. Denora, V. Laquintana, G. Trapani, G. Liso, G. Natile. J. Med. Chem. 2007. Vol. 50. P. 1019–1027. https://doi.org/10.1021/jm0612160

Targeted delivery of a peripheral benzodiazepine receptor ligand-gemcitabine conjugate to brain tumors in a xenograft model / P. Guo, J. Ma, S. Li, Z. Guo, A. L. Adams, J. M. Cancer Chemother. Pharmacol. 2001. Vol. 48. P. 169–176. https://doi.org/10.1007/s002800100284

Modulation of melphalan resistance in glioma cells with a peripheral benzodiazepine receptor ligand-melphalan conjugate / L. Kupczyk-Subotkowaka, T. J. Siahaan, A. Basile, H. S. Friedman, P. E. Higgins, D. Song, J. M. J. Med. Chem. 1997. Vol. 40. P. 1726–1730. https://doi.org/10.1021/jm960592p

Peripheral benzodiazepine receptor ligand-melphalan conjugates for potential selective drug delivery to brain tumors / G. Trapani, V. Laquintana, A. Latrofa, J. Ma, K. Reed, M. Serra, G. Biggio, G. Liso, J. M. Gallo. Bioconjugate Chem. 2003. Vol. 14. P. 830–839. https://doi.org/10.1021/bc034023p

James M., Selleri S., Kassiou M. Development of ligands for the peripheral benzodiazepine receptor. Curr. Med. Chem. 2006. Vol. 13. P. 1991–2001. https://doi.org/10.2174/092986706777584979

Synthesis, structure and affinity of 3-aryliden(hetaryliden)-1,2-dihydro-3H-1,4-benzodiazepine-2-ones for the CNS benzodiazepine receptors / V. I. Pavlovsky, S. Yu. Bachinskii, N. A. Tkachuk, S. Yu. Makan, S. A. Andronati, Yu. A. Simonov, I. G. Filippova, M. Gdaniec. Chem. Heterocycl. Compd. 2007. Vol. 43. P. 1029–1037. https://doi.org/10.1007/s10593-007-0161-3

Synthesis and properties of new 1-hydrazinocarbonylmethyl-7-bromo-5-phenyl-3-arylydene-1,2-dihydro-3H-1,4-benzodiazepin-2-ones / S. Yu. Bachinsky, N. O. Burenkova, S. A. Andronati, Yu. V. Ishkov. Visn. Odes. nac. univ., Him. 2023. Vol. 28, iss. 2(85). P. 43–51. https://doi.org/10.18524/2304-0947.2023.2(85).286601

,4-Benzodiazepine derivatives showing selective anxiolitic activity / S. Seredenin, Yu. A. Blednov, S. A. Andronati, V. I. Pavlovskii, A. S. Yavorskii. Patent RF, no. 2133248 C1. Published on 20.07.1999. [in Russian].

Maltsev H. V., Karpenko O. S., Liakhov S. A. Process for the aminoalkylation of diphenols and bis-hydroxy diphenols sposib-aminoalkiluvannya-difenoliv-ta-bis-gidroksidifeniliv : Patent UA, no. 41726. Published on 10.06.2009. [in Ukrainian].

He X., Zhangand C., Cook J. M. Model of the BzR binding site: correlation of data from site-directed mutagenesis and the pharmacophore/receptor model. Med. Chem. Res. 2001. Vol. 10. P. 269–308.

Svyaz mezhdu strukturoi, srodstvom k benzdiazepinovomu retseptoru i svoistvami 5-galogenofenil-1,2-digidro-3H-1,4-benzdiazepin-2-onov / S. A. Andronati, V. M. Chepelev, L. N. Yakubovskaya, A. V. Valdman, T. A. Voronina, V. V. Rozhanets, V. V. Zhudin, K. O. Korotkov. Bioorganicheskaya khimiya. 1983. Vol. 9, no. 10. P. 1357–1361. [in Russian].

Andronati S. A., Voronina T. A. Uspekhi khimii i farmakologii benzdiazepinov (obzor). Tselenapravlennyy poisk novykh neirotropnykh preparatov. Riga : Zinatne, 1983. P. 94–109. [in Russian].

Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABAA receptor complex / K. Dekermendjian, P. Kahnberg, M.-R. Witt, O. Sterner, M. Nielsen, T. Liljefors. J. Med. Chem. 1999. Vol. 42. P. 4343–4350. https://doi.org/10.1021/jm991010h

Molecular basis of peripheral vs central benzodiazepine receptor selectivity in a new class of peripheral benzodiazepine receptor ligands related to alpidem / M. Anzini, A. Cappelli, S. Vomero, G. Giorgi, T. Langer, G. Bruni, M. R. Romeo, A. S. Basile. J. Med. Chem. 1996. Vol. 39. P. 4275–4284. https://doi.org/10.1021/jm960325j

Affinitet k benzdiazepinovim retseptoram TsNS i neyrotropnye svoystva novykh 3-ariliden(getariliden)proizvodnykh 1,2-digidro-3H-1,4-benzdiazepina-2-ona / S. Yu. Makan, N. A. Burenkova, Ye. A. Kostenko, S. A. Andronati, V. S. Bitenskii. Vіsnik psikhіatrії ta psikhofarmakoterapії. 2007. Vol. 2, no. 12. P. 118–122. [in Russian].

Issledovanie affiniteta k benzdiazepinovym saytam GAMKA retseptorov CNS i funktsionalnoy aktivnosti potentsialnogo gipnotika – tsinatsepama / I. A. Boiko, S. Yu. Makan, S. P. Smulskii, S. A. Andronati. Visn. Odes. nac. univ., Him. 2005. Vol. 10, no. 1. P. 49–57. [in Russian].

Cheng Y. C., Prusoff W. H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973. Vol. 2. P. 3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2

##submission.downloads##

Опубліковано

2025-06-27

Як цитувати

Буренкова, Н. О., & Бачинський, С. Ю. (2025). АФІНІТЕТ НОВИХ ПОТЕНЦІЙНИХ ЛІГАНДІВ ГАМКА-РЕЦЕПТОРНОГО КОМПЛЕКСУ ТА TSPO РЕЦЕПТОРІВ ЦНС – цис-3-АРИЛІДЕН-7-БРОМ-5-АРИЛ-1,2-ДИГІДРО-3Н-1,4-БЕНЗОДІАЗЕПІН-2-ОНІВ. Вісник Одеського національного університету. Хімія, 30(1(89), 148–162. https://doi.org/10.18524/2304-0947.2025.1(89).335206

Номер

Розділ

Статті