ТЕНДЕНЦІЇ РОЗВИТКУ ТА ЗАСТОСУВАННЯ МІЦЕЛЯРНО-ЕКСТРАКЦІЙНОГО КОНЦЕНТРУВАННЯ (ОГЛЯД)

Автор(и)

DOI:

https://doi.org/10.18524/2304-0947.2025.1(89).335194

Ключові слова:

міцелярна екстракція, міцелоутворення, поверхнево-активні речовини, методи аналізу, супрамолекулярні розчинники

Анотація

Робота присвячена огляду сучасного стану та особливостей аналітичного застосування міцелярно-екстракційного концентрування. Із залученням наукометричних підходів, як інструменту кількісної оцінки динаміки розвитку наукових досліджень, проаналізовано тенденції та основні напрямки розвитку міцелярно-екстракційного концентрування протягом 2010–2024 років. Узагальнено дані щодо вибраних прикладів аналітичного застосування міцелярно-екстракційного концентрування в хімічному аналізі (2018–2024), розглянуто їх принципи, переваги та недоліки.

Посилання

Mortada W. Recent developments and applications of cloud point extraction: a critical review. Microchem. J. 2020. Vol. 57. Art. no. 105055. https://doi.org/10.1016/j.microc.2020.105055

Recent innovations in cloud point extraction towards a more efficient and environmentally friendly procedure / D. Snigur, E. Azooz, O. Zhukovetska, O. Guzenko, W. Mortada. Trends Anal. Chem. 2023. Vol. 164. Art. no. 117113. https://doi.org/10.1016/j.trac.2023.117113

Liquid-phase microextraction / N. Campillo, K. Gavazov, P. Viсas, I. Hagarova, V. Andruch. Appl. Spectrosc. Rev. 2020. Vol. 55, no. 11. P. 307–326. https://doi.org/10.1080/05704 928.2019.1604537

Nalimov V. V. Naukometriya: izuchenie razvitiya nauki kak informatsionnogo protsessa [Scientometrics: the study of the development of science as an information process]. Moscow : Nauka, 1966. 192 р. [in Russian].

Analiz tendentsiy razvitiya metoda himicheskoy tsvetometrii [The trends analysis of chemical chromaticity method evaluation] / A. N. Chebotarov, D. V. Snigur, E. V. Bevzyuk, I. S. Efimova. Metody i ob’ekty khimicheskogo analiza. 2014. Vol. 9, no. 1. P. 4–11. [in Russian].

Zolotov Yu. A. Naukometricheskie issledovaniya [Scientometric research]. Zhurn. analit. himii. 2003. Vol. 58, no. 10. P. 1013. [in Russian].

Watanabe H., Tanaka H. A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol. Talanta. 1978. Vol. 25. P. 585–589. https://doi.org/10.1016/0039-9140(78)80151-9

Azooz E. A., Moslim J. R., Jawad S. K. Cloud point extraction methodology for separation, extraction and preconcentration of Mn(VII) coupled with spectroscopy for determination in different samples. Biochem. Cell. Arch. 2020. Vol. 20, no. 1. P. 2641–2648.

Displacement cloud point extraction procedure for preconcentration of iron(III) in water and fruit samples prior to spectrophotometric determination / E. A. Azooz, G. J. Shabaa, E. H. Badder Al-Muhanna, E. A. J. Al-Mulla, W. I. Mortada. Bull. Chem. Soc. Ethiop. 2023. Vol. 37, no. 1. P. 1–10. https://doi.org/10.4314/BCSE.V37I1.1

Novel, energy efficient and green cloud point extraction: technology and applications in food processing / S. Arya, A. Kaimal, M. Chib, S. K. Sonawane, L. Show. J. Food Sci. Technol. 2019. Vol. 56. P. 524–534. https://doi.org/10.1007/s13197-018-3546-7

Determination of silver nanoparticles in complex aqueous matrices by total reflection X-ray fluorescence spectrometry combined with cloud point extraction / L. Torrent, M. Iglesias, M. Hidalgo, E. Marguí. J. Anal. At. Spectrom. 2018. Vol. 33, no. 3. P. 383–394. https://doi.org/10.1039/C7JA00335H

Kaykhaii M., Ghasemi E. Micro-cloud point extraction for preconcentration of Aspirin in commercial tablets prior to spectrophotometric determination. J. Anal. Chem. 2016. Vol. 71, no. 8. P. 844–848. https://doi.org/10.1134/S1061934816080074

Kumar K. R., Shyamala P. Catanionic mixed micellar cloud point extraction of metal ions in coal fly ash samples and their determination by CS-ETAAS. J. Environ. Chem. Eng. 2019. Vol. 7, no. 3. Art. no. 103119. https://doi.org/10.1016/j.jece.2019.103119

Zengin H., Gürkan R. Novel amide-and imide-co-polymers modified with sulfathiazole as efficient chelator for selective extraction, pre-concentration and determination of trace inorganic antimony (as Sb (III)) from edible vegetable oils by ultrasound assisted- cloud point extraction coupled to micro-volume UV-spectrophotometry. J. Food Compos. Anal. 2023. Vol. 115. Art. no. 104931. https://doi.org/10.1016/j.jfca.2022.104931

An environmentally friendly method for extraction of parabens in various samples using low viscosity and low cloud point temperature surfactant / N. M. Sohaimi, N. M. Saleh, M. M. Ariffin, S. Y. Beh, R. Ahmad. Malaysian. J. Anal. Sci. 2018. Vol. 22, no. 3. P. 365–374. https://doi.org/10.17576/mjas-2018-2203-01

Asman S., Abas N. A. Triton X-100/β-cyclodextrin cloud point extraction for removal of phenol using different of sodium salts as inducing phase separation agent. Asian J. Chem. 2018. Vol. 30, no. 6. P. 1299–1305. https://doi.org/10.14233/ajchem.2018.21228

“Inverse” cloud point extraction coupled with large volume injection ion-pair chromatography: a green route integrating extraction, challenging sample cleanup and on-column concentration into fast simple operation / J. Yu, J. Huang, F. Long, A. Ma, J. Pan. Talanta. 2018. Vol. 190. P. 38–46. https://doi.org/10.1016/j.talanta.2018.07.074

Separation and micro determination of zinc(II) and cadmium(II) in food samples using cloud point extraction method / F. A. Wannas, E. A. Azooz, R. K. Ridha, S. K. Jawad. Iraqi J. Sci. 2023. Vol. 64, no. 3. P. 1046–1061. https://doi.org/10.24996/ijs.2023.64.3.2

Ultrasound-assisted dual-cloud point extraction with high-performance liquid-chromatography hydride generation atomic fluorescence spectrometry for mercury speciation analysis in environmental water and soil samples / M. Xie, X. Hao, X. Jiang, W. Liu, T. Liu, H. Zheng, M. Wang. J. Separ. Sci. 2021. Vol. 44, no. 12. P. 2457–2464. https://doi.org/10.1002/jssc.202100088

Jawad S. K., Kadhium M. U., Azooz E. A. Separation and spectrophotometric determination of iron (III) and mercury (II) via cloud point extraction with new azo-derivative. Eurasian J. Anal. Chem. 2018. Vol. 13, no. 5. Art. no. em48. https://doi.org/10.29333/ejac/9497

Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – a review / I. Pacheco-Fernandez, R. Gonzalez-Martín, F. A. de Silva, M. G. Freire, V. Pino. Anal. Chim. Acta. 2021. Vol. 1143. P. 225–249. https://doi.org/10.1016/j.aca.2020.08.022

A micro mixed micelle- mediated preconcentration procedure for spectrophotometric determination of uranium in real and synthetic samples / W. Mortada, I. Kenawy, G. El-Gamal, S. Moalla. J. Radioanal. Nucl. Chem. 2017. Vol. 313, no. 1. P. 69–77. https://doi.org/10.1007/s10967-017-5281-3

pH-controlled mixed micelle cloud point extraction for selective removal of trace levels of iron from titanium concentrates / M. M. Elnagar, M. A. Hashem, M. M. Hassanien, M. A. Ismail. Sep. Purif. Technol. 2021. Vol. 265. Art. no. 118534. https://doi.org/10.1016/j.seppur.2021.118534

Colorimetric and visual determination of ultratrace uranium concentrations based on the aggregation of amidoxime functionalized gold nanoparticles / A. Saha, S. Neogy, D. R. M. Rao, S. B. Deb, M. K. Saxena, B. S. Tomar. Microchim. Acta. 2019. Vol. 186. P. 183. https://doi.org/10.1007/s00604-019-3292-1

Blanchet-Chouinard G., Lariviere D. Determination of Pb in environmental samples after cloud point extraction using crown ether. Talanta. 2018. Vol. 179. P. 300. https://doi.org/10.1016/j.talanta.2017.11.015

Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination / N. R. Biata, G. P. Mashile, J. Ramontja, N. Mketo, P. N. Nomngongo. Food Compos. Anal. 2019. Vol. 76. P. 14–21. https://doi.org/10.1016/j.jfca.2018.11.004

Melnyk A., Namiesnik J., Wolska L. Theory and recent applications of coacervate- based extraction techniques. TrAC, Trends Anal. Chem. 2015. Vol. 71. P. 282–292. https://doi.org/10.1016/j.trac.2015.03.013

Shokrollahi A., Refahi M. Development of cloud point extraction-scanometry, for the preconcentration and determination of colorless species: application for the determination of phenylalanine. Quim. Nova. 2019. Vol. 42, no. 1. P. 36–41. https://doi.org/10.21577/0100-4042.20170303

Application of simple, fast and eco-friendly ultrasound-assisted-cloud point extraction for pre-concentration of zinc, nickel and cobalt from foods and vegetables prior to their flame atomic absorption spectrometric determinations / N. Altunay, A. Elik, C. Bulutlu, R. Gürkan. Int. J. Environ. Anal. Chem. 2018. Vol. 98, no. 7. P. 655–675. https://doi.org/10.1080/03067319.2018.1487063

Cloud point extraction coupled with back-extraction for speciation of inorganic vanadium in water and determination of total vanadium in food samples by ICP-OES / W. I. Mortada, M. M. El-Defrawy, E. Erfan, H. A. El-Asmy. J. Food Compos. Anal. 2022. Vol. 108. Art. no. 104445. https://doi.org/10.1016/j.jfca.2022.104445

A centrifuge-less cloud point extraction-spectrophotometric determination of copper(II) using 6-hexyl-4-(2-thiazolylazo)resorcinol / P. V. Racheva, N. P. Milcheva, F. Genc, K. B. Gavazov. Spectrochim. Acta A. 2021. Vol. 262. Art. no. 120106. https://doi.org/10.1016/j.saa.2021.120106

Optimization of a new cloud point extraction procedure for the selective determination of trace amounts of total iron in some environmental samples / C. Duran, D. Özdes, E. Çelenk Kaya H. Kantekin, V. Numan Bulut, M. Tüfekçі. Turk. J. Chem. 2012. Vol. 36, no. 3. P. 445–456. https://doi.org/10.3906/kim-1108-10

Filik H., Giray D. Cloud point extraction for speciation of iron in beer samples by spectrophotometry. Food Chem. 2011. Vol. 130, no. 1. P. 209–213. https://doi.org/10.1016/j.foodchem.2011.07.008

Applicability of cloud point extraction for the separation trace amount of lead ion in environmental and biological samples prior to determination by flame atomic absorption spectrometry / S. Z. Mohammadi, T. Shamspur, D. Afzali, M. A. Taher, Y. M. Baghelani. Arabian J. Chem. 2016. Vol. 9, suppl. 1. P. 610–615. https://doi.org/10.1016/j.arabjc.2011.07.003

Suna M., Wub. Q. Cloud point extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) in human serum samples. J. Pharm. Biomed. Anal. 2012. Vol. 60. P. 14–18. https://doi.org/10.1016/j.jpba.2011.10.034

Ulusoy H. I., Gürkan R., Ulusoy S. Cloud point extraction and spectrophotometric determination of mercury species at trace levels in environmental samples. Talanta. 2011. Vol. 88. P. 516–523. https://doi.org/10.1016/j.talanta.2011.11.026

Determination of formaldehyde in beer based on cloud point extraction using 2,4-dinitrophenylhydrazine as derivative reagent / T. Wanga, X. Gao, J. Tong, L. Chen. Food Chem. 2011. Vol. 131, no. 4. P. 1577–1582. https://doi.org/10.1016/j.foodchem.2011.10.021

Design of rapidly synergistic cloud point extraction of ultra-trace lead combined with flame atomic absorption spectrometry determination / X. Wen, Q. Deng, S. Ji, S. Yang, L. Peng. Microchem. J. 2011. Vol. 100. P. 31–35. https://doi.org/10.1016/j.microc.2011.08.005

Selective cloud point extraction for the determination of cadmium in food samples by flame atomic absorption spectrometry / G. Xiang, S. Wena, X. Wub, X. Jiang, L. He, Y. Liu. Food Chem. 2011. Vol. 132. P. 532–536. https://doi.org/10.1016/j.foodchem.2011.10.053

Determination of estrogens in human urine by high-performance liquid chromatography/diode array detection with ultrasound-assisted cloud-point extraction / Y. Zou, Y. Li, H. Jin, H. Tang, D. Zou, M. Liu, Y. Yang. Anal. Biochem. 2011. Vol. 421, no. 2. P. 378–384. https://doi.org/10.1016/j.ab.2011.10.007

Determination of cadmium(II) ion by atomic absorption spectrometry after cloud point extraction / R. Golbedaghi, S. Jafari, M. R. Yaftian, R. Azadbakht, S. Salehzadeh, B. Jaleh. J. Iranian Chem. Soc. 2012. Vol. 9, no. 3. P. 251–256. https://doi.org/10.1007/s13738-011-0018-7

Cloud point extraction and flame atomic absorption spectrometry determination of lead(II) in environmental and food samples / M. Soylak, E. Yilmaz, M. Ghaedi, M. Montazerozohori, M. Sheibani. J. AOAC Int. 2011. Vol. 95, no. 6. P. 1797–1802. https://doi.org/10.5740/jaoacint.10-370

Pourreza N., Fat’hi M. R., Hatami A. Indirect cloud point extraction and spectrophotometric determination of nitrite in water and meat products. Microchem. J. 2012. Vol. 104. P. 22–25. https://doi.org/10.1016/j.microc.2012.03.026

Santaladchaiyakit Y., Srijaranai S. A simplified ultrasound-assisted cloud-point extraction method coupled with high performance liquid chromatography for residue analysis of benzimidazole anthelmintics in water and milk samples. Anal. Methods. 2012. No. 11. P. 3864–3873. https://doi.org/10.1039/c2ay25569c

Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry / H. Shoaee, M. Roshdi, N. Khanlarzadeh, A. Beiraghi. Spectrochim. Acta A. 2012. Vol. 98. P. 70–75. https://doi.org/10.1016/j.saa.2012.08.027

Khammas Z. A. A., Jawad S. K., Ali I. R. A new approach for extraction and determination of manganese in environmental samples using cloud-point extraction coupled with spectrophotometry. Chem. Sci. Trans. 2014. Vol. 3, no. 1. P. 255–267.

Galbeiro R., Garcia S., Gaubeur I. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry. J. Trace Elem. Med. 2013. Vol. 28, no. 2. P. 160–165. https://doi.org/10.1016/j.jtemb.2013.12.004

Gouda A. A., Amin A. S. Cloud-point extraction, preconcentration and spectrophotometric determination of trace quantities of copper in food, water and biological samples. Spectrochim. Acta A. 2013. Vol. 120. P. 88–96. https://doi.org/10.1016/j.saa.2013.09.146

Determination of malachite green in environmental water using cloud point extraction coupled with surface-enhanced Raman scattering / Y. Jin, P. Ma, F. Liang, D. Gao, X. Wang. Anal. Methods. 2013. No. 5. Art. no. 5609. https://doi.org/10.1039/c3ay41128a

Sun M., Liu G., Wuc Q. Speciation of organic and inorganic selenium in selenium- enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction. Food Chem. 2013. Vol. 141, no. 1. P. 66–71. http://doi.org/10.1016/j.foodchem.2013.03.002

López-García I., Vicente-Martínez Y., Hernández-Córdoba M. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry. Spectrochim. Acta B. 2014. Vol. 101. P. 93–97. http://doi.org/10.1016/j.sab.2014.07.017

López-García I., Vicente-Martínez Y., Hernández-Córdoba M. Non-chromatographic speciation of chromium at sub-ppblevels using cloud point extraction in the presence of unmodified silver nanoparticles. Talanta. 2014. Vol. 132. P. 23–28. http://doi.org/10.1016/j.talanta.2014.08.036

Altunay N., Gurkan R. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry. Food Chem. 2014. Vol. 175. P. 507–515. http://doi.org/10.1016/j.foodchem.2014.12.012

Gouda A. A. Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese(II) in water and food samples. Spectrochim. Acta A. 2014. Vol. 131. P. 138–144. http://doi.org/10.1016/j.saa.2014.04.075

Cloud point extraction for the determination of bisphenol A, bisphenol AF and tetrabromobisphenol A in river water samples by high-performance liquid chromatography / Y. Li, C. Yang, J. Ninga, Y. Yang. Anal. Methods. 2014. No. 10. P. 3285–3290. https://doi.org/10.1039/c3ay42191k

Liu C., Wang J., Yang Y. High-performance liquid chromatography determination of antioxidants in cosmetics after cloud point extraction using dodecylpolyoxyethylene ether. Anal. Methods. 2014. No. 15. P. 6038–6043. https://doi.org/10.1039/c4ay01007h

Mortada W. I., Hassanien M. M., El-Asmy A. A. Cloud point extraction of some precious metals using Triton X-114 and a thioamide derivative with a salting-out effect. Egypt J. Basic Appl. Sci. 2014. Vol. 1, no. 3–4. P. 184–191. https://doi.org/10.1016/j.ejbas.2014.07.001

Gürkan R., Kır U., Altunay N. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV–Vis spectrophotometry. Food Chem. 2015. Vol. 180. P. 32–41. https://doi.org/10.1016/j.foodchem.2015.01.142

Gürkan R., Altunay N. Quantification of 5-hydroxymethylfurfural in honey samples and acidic beverages using spectrophotometry coupled with ultrasonicassisted cloud point extraction. J. Food Composition Anal. 2015. Vol. 42. P. 141–151. https://doi.org/10.1016/j.jfca.2015.03.012

Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine / P. Davletbaeva, M. Falkova, E. Safonova. L. Moskvi$, A. Bulatov. Anal. Chim. Acta. 2015. Vol. 911. P. 69–74. https://doi.org/10.1016/j.aca.2015.12.045

Diniz K. M., Tarley C. R. T. Speciation analysis of chromium in water samples through sequential combination of dispersive magnetic solid phase extraction using mesoporous amino-functionalized Fe3O4/SiO2 nanoparticles and cloud point extraction. Microchem. J. 2015. Vol. 123. P. 185–195. http://doi.org/10.1016/j.microc.2015.06.011

On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony / R. M. Frizzarin, L. A. Portugal, J. M. Estela, F. R. P. Rocha, V. Cerdà. Talanta. 2015. Vol. 148. P. 694–699. https://doi.org/10.1016/j.talanta.2015.04.076

Ghasemi E., Kaykhali M. Developing a new micro cloud point extraction method for simultaneous preconcentration and spectrophotometric determination of uranium and vanadium in brine. Anal. Sci. 2015. Vol. 31. P. 407–411. https://doi.org/10.2116/analsci.31.407

Heydari R., Hosseini M., Zarabi S. A simple method for determination of carmine in food samples based on cloud point extraction and spectrophotometric detection. Spectrochim. Acta A. 2015. Vol. 150. P. 786–791. https://doi.org/10.1016/j.saa.2015.06.032

Application of cloud point extraction for cadmium in biological samples of occupationally exposed workers: relation between cadmium exposure and renal lesion / W. I. Mortada, M. M. Hassanien, A. F. Donia, A. A. Shokeir. Biol. Trace Elem. Res. 2015. Vol. 168, no. 2. P. 303–310. https://doi.org/10.1007/s12011-015-0365-9

Mortada W. I., Kenawy I. M., Hassanien M. M. A cloud point extraction procedure for gallium, indium and thallium determination in liquid crystal display and sediment samples. Anal. Methods. 2015. No. 5. P. 2114–2120. https://doi.org/10.1039/c4ay02926g

Khan N., Kazi T. G., Tuzen M. Development of novel simultaneous single step and multistep cloud point extraction method for silver, cadmium and nickel in water samples. J. Ind. Eng. Chem. 2015.Vol. 35. P. 93–98. https://doi.org/10.1016/j.jiec.2015.12.022

A simple method for simultaneous spectrophotometric determination of brilliant blue FCF and sunset yellow FCF in food samples after cloud point extraction / R. Heydari, M. Hosseini, M. Alimoradi, S. Zarabi. Agric. Food Sci. Chem. 2016. Vol. 38, no. 3. P. 438–445.

Gürkan R., Altunay N., Yıldırım E. Combination of ultrasonic-assisted cloud point extraction with flame AAS for preconcentration and determination of trace amounts of silver and cadmium in dried nut and vegetable samples. Food. Anal. Methods. 2016. Vol. 9, no. 11. P. 3218–3229. https://doi.org/10.1007/s1216-1016-0505-7

Gürkan R., Korkmaz S., Altunay N. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic- thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry. Talanta. 2016. Vol. 155. P. 38–46. https://doi.org/10.1016/j.talanta.2016.04.012

Altunay N., Gürkan R., Yıldırım E. A New ultrasound assisted-cloud point extraction method for the determination of trace levels of tin and antimony in food and beverages by flame atomic absorption spectrometry. Food Anal. Methods. 2016. Vol. 9. P. 2960–2971. https://doi.org/10.1007/s12161-016-0487-5

Altunay N., Gürkan R. Separation/preconcentration of ultra-trace levels of inorganic Sb and Se from different sample matrices by charge transfer sensitized ion-pairing using ultrasonic-assisted cloud point extraction prior to their speciation and determination by hydride generation AAS. Talanta. 2016. Vol. 159. P. 344–355. https://doi.org/10.1016/j.talanta.2016.06.054

El-Hay S. S. A., Gouda A. A. Determination of thorium(IV) in real samples by spectrophotometry after micelle-mediated cloud point extraction. J. Radioanal. Nucl. Chem. 2016. Vol. 310, no. 1. P. 191–200. https://doi.org/10.1007/s10967-016-4780-y

Ghasemi E., Kaykhaii M. Application of micro-cloud point extraction for spectrophotometric determination of malachite green, crystal violet and rhodamine B in aqueous samples. Spectrochim. Acta A. 2016. Vol. 164. P. 93–97. https://doi.org/10.1016/j.saa.2016.04.001

Gouda A. A., Summan A. M., Amin A. H. Development of cloud-point extraction method for preconcentration of trace quantities of cobalt and nickel in water and food samples. RSC Adv. 2016. No. 6. P. 94048–94057. https://doi.org/10.1039/c6ra20900a

Efficient method for determination of methylene blue dye in water samples based on a combined dispersive solid phase and cloud point extraction using Cu(OH)2 nanoflakes: central composite design optimization / F. Nekouei, H. Kargarzadeh, S. Nekouei, F. Keshtpour, A. S. H. Makhlouf. Anal Bioanal Chem. 2016. Vol. 409, no. 4. P. 1079–1092. https://doi.org/10.1007/s00216-016-0026-7

Rahnama R., Najafi M. The use of rapidly synergistic cloud point extraction for the separation and preconcentration of trace amounts of Ni(II) ions from food and water samples coupling with flame atomic absorption spectrometry determination. Environ. Monit. Assess. 2016. Vol. 188, no. 3. Art. no. 150. https://doi.org/10.1007/s10661-016-5146-1

Tiwari S., Deb M. K., Sen B. K. Cloud point extraction and diffuse reflectance- Fourier transform infrared spectroscopic determination of chromium(VI): a probe to adulteration in food stuffs. Food Chem. 2017. Vol. 221. P. 47–53. https://doi.org/10.1016/j.foodchem.2016.10.034

Cloud point extraction and flame atomic absorption spectrometric determination of Cd(II) in industrial and environmental samples / Y. Sürme, A. T. Bişgin, M. Uçan, I. Narin. J. Anal. Chem. 2018. Vol. 73, no. 2. P. 140–144. https://doi.org/10.1134/S1061934818020120

Cloud point extraction and simultaneous spectrophotometric determination of allura red and carmoisine using wavelet orthogonal signal correction–partial least squares method / A. Amraei, A. Niazi, M. Alimoradi, M. Hosseini. J. Anal. Chem. 2019. Vol. 74, no. 2. P. 93–99. https://doi.org/10.1134/S1061934819020023

Abdullah H. H. Cloud-point extraction and spectrophotometric determination of clonazepam in pharmaceutical dosage forms. Bull. Chem. Soc. Ethiopia. 2017. Vol. 31, no. 3. P. 373–382. https://doi.org/10.4314/bcse.v31i3.2

Application of modified cloud point extraction method for the chromium speciation in artificial saliva extracts of different snuff products / A. Akhtar, T. G. Kazi, H. I. Afridi, M. Khan, M. Bilal, N. Khan. J. Ind. Eng. Chem. 2017. Vol. 59. P. 320–327. https://doi.org/10.1016/j.jiec.2017.10.038

Khudhair A. F., Hassan, M. K. Cloud point extraction and determination of trace iron(III) in urine samples by spectrophotometry and flame atomic absorption spectrometry. Asian J. Chem. 2017. Vol. 29, no. 12. P. 2725–2733. https://doi.org/10.14233/ajchem.2017.20848

Indirect spectrophotometric determination of sulfadiazine based on localized surface plasmon resonance peak of silver nanoparticles after cloud point extraction / E. Kazemi, S. Dadfarnia, A. M. H. Shabani, M. R. Fattahi, J. Khodaveisi. Spectrochim. Acta A. 2017. Vol. 187. P. 30–35. https://doi.org/10.1016/j.saa.2017.06.023

Karatepe A., Akalin Ç., Soylak M. Spectrophotometric determination of carmoisine after cloud point extraction using Triton X-114. Turk. J. Chem. 2017. Vol. 41, no. 2. P. 256–262. https://doi.org/10.3906/kim-1606-45

Wena S., Zhu X. Speciation of inorganic arsenic(III) and arsenic(V) by a facile dual-cloud point extraction coupled with inductively plasma-optical emission spectrometry. Talanta. 2017. Vol. 181. P. 265–270. https://doi.org/10.1016/j.talanta.2017.12.083

Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples / X. Yang, Z. Jia, X. Yang, G. Li, X. Liao. Saudi J. Biol. Sci. 2017. Vol. 24, no. 3. P. 589–594. https://doi.org/10.1016/j.sjbs.2017.01.030

Determination of trace nickel in water samples by graphite furnace atomic absorption spectrometry after mixed micelle-mediated cloud point extraction / Q. Han, Y. Huo, L. Yang, X. Yang, Y. He, J. Wu. Mol. 2018. Vol. 23, no. 10. Art. no. 2597. https://doi.org/10.3390/molecules23102597

Ultrasonically modified amended-cloud point extraction for simultaneous pre- concentration of neonicotinoid insecticide residues / R. Kachangoon, J. Vichapong, R. Burakham, Y. Santaladchaiyakit, S. Srijaranai. Mol. 2018. Vol. 23, no. 5. Art. no. 1165. https://doi.org/10.3390/molecules23051165

Salicylic acid assisted cloud point extraction at room temperature: application for preconcentration and spectrophotometric determination of molybdenum(VI) / D. Snigur, A. Chebotarev, V. Dubovyy, D. Barbalat, K. Bevziuk. Microchem. J. 2018. Vol. 142. P. 273–278. https://doi.org/10.1016/j.microc.2018.07.010

Temel N. K., Sertakan K., Gürkan R. Preconcentration and determination of trace nickel and cobalt in milk-based samples by ultrasound-assisted cloud point extraction coupled with flame atomic absorption spectrometry. Biol. Trace Elem. Res. 2018. Vol. 186, no. 2. P. 597–607. https://doi.org/10.1007/s12011-018-1337-7

Pre-concentration based on cloud point extraction for ultra-trace monitoring of lead (II) using flame atomic absorption spectrometry / A. H. Kamel, A. E. E. Amr, M. A. Al-Omar, E. A. Elsayed. Appl. Sci. 2019. Vol. 9, no. 22. Art. no. 4752. https://doi.org/10.3390/app9224752

Beiraghi A., Shirkhani A. R., Halimehjani A. Z. Separation, preconcentration and determination of Hg(II) ion in water samples by cloud point extraction technique coupled with UV–VIS spectrophotometry using a new complexing agent. International. J. New Chem. 2019. Vol. 6, no. 3. P. 163–177. https://doi.org/10.22034/ijnc.2019.35367

Selective separation of gadolinium from a series of f-block elements by cloud point extraction and its application for analysis of real samples / M. E. Khalifa, W. I. Mortada, M. M. El-Defrawy, A. A. Awad. Microchem. J. 2019. Vol. 151. Art. no. 104214. https://doi.org/10.1016/j.microc.2019.104214

A rapid synergistic cloud point extraction for nine alkylphenols in water using high performance liquid chromatography and fluorescence detection / X. Luo, J. Hong, H. Zheng, J. Qin, M. Wang, B. Yang. J. Chromatogr. A. 2019. Vol. 1611. Art. no. 460606. https://doi.org/10.1016/j.chroma.2019.460606

Temela N. K., Gürkan R. Application of ultrasound-assisted cloud-point extraction and Sspectrophotometry for preconcentration and determination of trace amounts of copper(II) in beverages. J. Anal. Chem. 2019. Vol. 74, no. 12. P. 1174–1183. https://doi.org/10.1134/S1061934819120128

Temela N. K., Kuş B., Gürkan R. A new ion-pair ultrasound assisted-cloud point extraction approach for determination of trace V(V) and V(IV) in edible vegetal oils and vinegar by spectrophotometry. Microchem. J. 2019. Vol. 150. Art. no. 104139. https://doi.org/10.1016/j.microc.2019.104139

Dual-cloud point extraction for speciation of mercury in water and fish samples by electrothermal atomic absorption spectrometry / A. Thongsaw, R. Sananmuang, Y. Udnan, G. M. Ross, W. C. Chaiyasith. Spectrochim. Acta B. 2019. Vol. 160. Art. no. 105685. https://doi.org/10.1016/j.sab.2019.105685

Zengin H. B. Use of new polymeric composites for preconcentration of trace Ag + ions from the selected mushroom/ vegetables by ultrasound-assisted cloud-point extraction coupled to microvolume UV–Vis spectrophotometry. Int. J. Environ. Anal. Chem. 2019. Vol. 101, no. 14. P. 1–25. https://doi.org/10.1080/03067319.2019.1691186

Safdarian M., Hashemi P., Ghiasvand A. A fast and simple method for determination of β-carotene in commercial fruit juice by cloud point extraction-cold column trapping combined with UV–Vis spectrophotometry. Food Chem. 2020. P. 343. Art. no. 128481. https://doi.org/10.1016/j.foodchem.2020.128481

Akl Z. F., Hegazy M. A. Selective cloud point extraction of thorium (IV) using tetraazonium based ionic liquid. Egypt J. Environ. Chem. Eng. 2020. Vol. 8, no. 5. Art. no. 104185. https://doi.org/10.1016/j.jece.2020.104185

Cloud-point extraction associated with voltammetry: preconcentration and elimination of the sample matrix for trace determination of methyl parathion in honey / P. A. R. de Sousa, A. L. Squissato, R. A. A. Munoz, L. M. Coelho, E. I. de Meloc, R. A. B. da Silva. Anal. Methods. 2020. Vol. 48. P. 5801–5814. https://doi.org/10.1039/d0ay02057e

Fast room temperature cloud point extraction procedure for spectrophotometric determination of phosphate in water samples / D. Snigur, A. Chebotarev, K. Bulat, V. Dubovyy. Anal. Biochem. 2020. Vol. 597. Art. no. 113671. https://doi.org/10.1016/j.ab.2020.113671

Llaver M., Wuilloud R. G. Studying the effect of an ionic liquid on cloud point extraction technique for highly efficient preconcentration and speciation analysis of tellurium in water, soil and sediment samples. Talanta. 2020. Vol. 212. Art. no. 120802. https://doi.org/10.1016/j.talanta.2020.120802

de Sá I. P., de Souza G. B., de Araujo Nogueira A. R. Chromium speciation in organic fertilizer by cloud point extraction and optimization through experimental Doehlert design as support for legislative aspects. Microchem. J. 2020. Vol. 160, part A. Art. no. 105618. https://doi.org/10.1016/j.microc.2020.105618

Simultaneous separation and determination of five monoterpene glycosides in Paeonia suffruticosa flower samples by ultra-high-performance liquid chromatography with a novel reinforced cloud point extraction based on ionic liquid / Q. F. Wang, Y. Q. Zhao, J. B. Sun, J. Zhou. Microchem. J. 2021. Vol. 168. Art. no. 106457. https://doi.org/10.1016/j.microc.2021.106457

Facile cloud point extraction for the separation and determination of phenolic acids from dandelion / Y. Ji, L. Wu, R. Lv, H. Wang, S. Song, M. Cao. ACS Omega. 2021. Vol. 6, no. 20. P. 13508–13515. https://doi.org/10.1021/acsomega.1c01768

Rapid synergistic cloud point extraction for simultaneous determination of five polar phenols in environmental water samples via high performance liquid chromatography with fluorescence detection / W. Liu, M. Xie, X. Hao, Q. Xu, X. Jiang, T. Liu, M. Wang. Microchem. J. 2021. Vol. 164. Art. no. 105963. https://doi.org/10.1016/j.microc.2021.105963

An environmentally friendly cloud point extraction – spectrophotometric determination of trace vanadium using a novel reagent / N. P. Milcheva, F. Genç, P. V. Pacheva, V. B. Delchev, V. Andruch, K. B. Gavazov. J. Mol. Liq. 2021. Vol. 334. Art. no. 116086. https://doi.org/10.1016/j.molliq.2021.116086

Displacement cloud point extraction procedure for preconcentration of iron(III) in water and fruit samples prior to spectrophotometric determination / E. A. Azooz, G. J. Shabaa, E. H. B. Al-Muhanna, E. A. J. Al-Mulla, W. I. Mortada. Bull. Chem. Soc. Ethiopia. 2022. Vol. 37, no. 1. P. 1–10. https://doi.org/10.4314/bcse.v37i1.1

Azooz E. A., Shabaa G. J., Al-Mulla E. A. J. Methodology for preconcentration and determination of silver in aqueous samples using cloud point extraction. Brazil. J. Anal. Chem. 2022. Vol. 9, no. 35. P. 39–48. http://doi.org/10.30744/brjac.2179-3425.AR-61-2021

Use of a hydrophobic azo dye for the centrifuge-less cloud point extraction –spectrophotometric determination of cobalt / K. B. Gavazov, P. V. Racheva, N. P. Milcheva, V. V. Divarova, D. D. Kiradzhiyska, F. Genç, A. D. Saravanska. Mol. 2022. Vol. 27, no. 15. Art. no. 4725. https://doi.org/10.3390/molecules27154725

Ultrasound-asisted one-pot cloud point extraction for iron determination using natural chelating ligands from dipterocarpus intricatus dyer fruit / S. Supharoek, B. Weerasuk, W. Siriangkhawut, K. G. K. Ponhong. Mol. 2022. Vol. 27, no. 17. Art. no. 5697. https://doi.org/10.3390/molecules27175697

Utilization of cloud point extraction for enhancement the efficiency of spectrophotometric estimation of milnacipran HCl as anti-depression drug in dosage forms and application to its tablets uniformity testing / M. M. Garoub, A. A. Gouda, R. El Sheikh, E. Fawzy, W. E. El Toukhi. J. Umm Al-Qura University Appl. Sci. 2022. Vol. 9, no. 1. P. 29–39. https://doi.org/10.1007/s43994-022-00012-7

One-pot co-extraction of dispersive solid phase extraction employing iron-tannic nanoparticles assisted cloud point extraction for the determination of tetracyclines by high-performance liquid chromatography / K. Phomai, S. Supharoek, J. Vichapong, K. Grudpan, K. Ponhong. Talanta. 2022. Vol. 252. Art. no. 123852. https://doi.org/10.1016/j.talanta.2022.123852

Hamad M. W., Aljuraisy A. M., Al-Samarray S. Y. Novel method for determination of captopril in pharmaceutical formulations by cloud-point extraction. HIV Nursing. 2023. Vol. 23, no. 2. P. 1202–1207.

##submission.downloads##

Опубліковано

2025-06-27

Як цитувати

Снігур, Д. В., & Демчук, А. В. (2025). ТЕНДЕНЦІЇ РОЗВИТКУ ТА ЗАСТОСУВАННЯ МІЦЕЛЯРНО-ЕКСТРАКЦІЙНОГО КОНЦЕНТРУВАННЯ (ОГЛЯД). Вісник Одеського національного університету. Хімія, 30(1(89), 60–84. https://doi.org/10.18524/2304-0947.2025.1(89).335194

Номер

Розділ

Статті