СИНТЕЗ ТА ПРАКТИЧНЕ ЗАСТОСУВАННЯ ІММОБІЛІЗОВАНИХ КОМПЛЕКСІВ ВАНАДІЮ(IV) З ОСНОВАМИ ШИФА

Автор(и)

  • М. В. Малюк Національний університет «Києво-Могилянська академія», факультет природничих наук, кафедра хімії, Україна https://orcid.org/0009-0008-4966-8534
  • О. А. Голуб Національний університет «Києво-Могилянська академія», факультет природничих наук, кафедра хімії, Україна https://orcid.org/0000-0003-1823-2523

DOI:

https://doi.org/10.18524/2304-0947.2025.1(89).335191

Ключові слова:

ванадій, основи Шифа, гетерогенні каталізатори, іммобілізовані комплекси, хімія поверхні

Анотація

Стаття містить огляд методів синтезу іммобілізованих ванадієвих комплексів з основами Шифа на різних твердих носіях, таких як кремнеземи, оксид графену, магнітні наночастинки, полімерні носії, глиняні матриці, цеоліти, біополімери. Описано спектр використання таких іммобілізованих комплексів як гетерогенних каталізаторів в ряді реакцій органічного синтезу, що мають перспективу використання в хімічній і фармацевтичній промисловості.

Посилання

Taft J. R. VO(dtpa) complexes immobilized on mesoporous silica: structural characterization and mechanistic investigation of sulfide and alkene oxidation reactions : PhD dissertation in Chemistry. Vermont, 2019. 24 p. https://core.ac.uk/download/pdf/215154127.pdf

Al Zoubi W., Ko Y. G. Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I. Appl. Organomet. Chem. 2016. https://doi.org/10.1002/aoc.3574

Da Silva J. A. L., Da Silva J. F., Pombeiro A. Oxovanadium complexes in catalytic oxidations. Coord. Chem. Rev. 2011. Vol. 255. P. 2232–2248. http://doi.org/10.1016/j.ccr.2011.05.009

Synthesis and characterization of oxo-vanadium complex anchored onto SBA-15 as a green, novel and reusable nanocatalyst for the oxidation of sulfides and oxidative coupling of thiols / T. Tamoradi, M. Ghadermazi, A. Ghorbani-Choghamarani, S. Molaei. Res. Chem. Intermed. 2018. Vol. 44. P. 4259–4276. https://doi.org/10.1007/s11164-018-3367-3

Maurya M. R., Kumar A., Pessoa C. Vanadium complexes immobilized on solid supports and their use as catalysts for oxidation and functionalization of alkanes and alkenes. Coord. Chem. Rev. 2011. Vol. 255, no. 19–20. P. 2315–2344. https://doi.org/10.1016/j.ccr.2011.01.050

Highly selective epoxidation of olefins using vanadium (IV) schiff base- amine- tagged graphene oxide composite / H. Hassan, M. A. Betiha, E. A. El-Sharkawy, R. Elshaarawy, N. B. El-Assy, A. A. Essawy, M. A. Tolba, A. M. Rabie. Colloids and Surf. A, Physicochem. Eng. Asp. 2020. Vol. 591. Art. no. 124520. https://doi.org/10.1016/j.colsurfa.2020.124520

Vanadium-oxo immobilized onto Schiff base modified graphene oxide for efficient catalytic oxidation of 5-hydroxymethylfurfural and furfural into maleic anhydride / G. Lv, C. Chen, B. Lu, J. Li, Y. Yang, C. Chen, T. Deng, Y. Zhu, X. Hou. RSC Adv. 2016. No. 103. P. 101277–101282. https://doi.org/10.1039/C6RA21795H

Samani M., Ardakani M. H., Sabet M. Efficient and selective oxidation of hydrocarbons with tert-butyl hydroperoxide catalyzed by oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles. Res. Chem. Intermed. 2022. Vol. 48. P. 1481–1494. https://doi.org/10.1007/s11164-022-04656-2

Maurya M., Sikarwar S., Kumar M. Oxovanadium(IV) complex of β-alanine derived ligand immobilised on polystyrene for the oxidation of various organic substrates. Catal. Commun. 2007. Vol. 8, no. 12. P. 2017–2024. https://doi.org/10.1016/j.catcom.2007.03.031

Selective catalytic oxidation of olefins by novel oxovanadium(iv) complexes having different donor ligands covalently anchored on SBA-15: a comparative study / A. Di Giuseppe, C. Di Nicola, R. Pettinari, I. Ferino, D. Meloni, M. Passacantandod, M. Crucianelli. Catal. Sci. Technol. 2013. No. 8. P. 1972–1984 https://doi.org/10.1039/C3CY00126A

Supported vanadium catalysts: heterogeneous molecular complexes, electrocatalysis and biomass transformation / C. Freire, C. Pereira, B. Jarrais, D. Fernandes, A. Peixoto, N. Cordeiro, F. Teixeira. Vanadium Catal. 2020. Chapt. 11. P. 241–284. Catalysis series. https://doi.org/10.1039/9781839160882-00241

Synthetic and catalytic perspectives of polystyrene supported metal catalyst / S. Kumari, S. Kumar, R. Karan, R. Bhatia, A. Kumar, R. K. Rawal, P. K. Gupta. J. Iranian Chem. Soc., 2024, vol. 21, pp. 951–1010. https://doi.org/10.1007/s13738-024-02970-7

Syntez ta sorbtsiini vlastyvosti funktsionalizovanykh MCM-41 kremnezemiv / N. V. Roik, L. O. Beliakova, I. M. Trofymchuk, M. O. Dziazko. Khimiia, fizyka ta tekhnolohiia poverkhni. 2017. Vol. 8, no. 3. P. 250–270. https://doi.org/10.15407/hftp08.03.250 [in Ukrainian].

Jabbari A., Nikoorazm М., Moradi P. Two Schiff-base complexes of cadmium and manganese on modified MCM-41 as practical, recyclable and selective nanocatalysts for the synthesis of sulfoxides. J. Porous Mater. 2023. Vol. 30. P. 1395–1402. https://doi.org/10.1007/s10934-023-01427-1

Nikoorazm M., Jabbari A. Synthesis and characterization of M-5NSA-MCM-41 (M = Cr, Fe) as reusable catalysts for the selective oxidation of sulfides to sulfoxides and oxidative coupling of thiols into disulfides in the presence of H2O2. J. Porous Mater. 2017. Vol. 24. P. 477–486. https://doi.org/10.1007/s10934–016–0283-z

Jabbari A., Nikoorazm M., Moradi P. A V(O)-Schiff-base complex on MCM-41 as an efficient, reusable, and chemoselective nanocatalyst for the oxidative coupling of thiols and oxidation of sulfides. Res. Chem. Intermed. 2023. Vol. 49. P. 1485–1505. https://doi.org/10.1007/s11164-023-04977-w

Nikoorazm M., Khanmoradi M. Synthesis and characterization of VO-vanillin complex immobilized on MCM-41 and its facile catalytic application in the sulfoxidation reaction, and synthesis of 2,3-dihydroquinazolin-4 (1H)-ones and disulfides in green media. J. Chin. Chem. Soc. 2020. Vol. 67, no. 8. P. 1477–1489. https://doi.org/10.1002/jccs.201900531

Jose J., Balakrishnan S. P. Synthesis, structural characterization, electrochemical and photocatalytic properties of vanadium complex anchored on reduced graphene oxide. Inorg. Nano-Metal Chem. 2022. Vol. 52, no. 6. P. 881–889. https://doi.org/10.1080/24701556.2021.1956955

Grafting of oxo-vanadium Schiff base on graphenenanosheets and its catalytic activity for the oxidation of alcohols / P. M. Harshal, S. Verma, N. Kumar, B. Sain, O. P. Khatri. Eur. J. Mater. Chem. 2012. No. 12. P. 5427–5433. https://doi.org/10.1039/C2JM15644J

Ardakani M. H., Naeimi A., Mohammadabadi Z. Efficient and selective oxidation of alcohols and hydrocarbons catalyzed by oxovanadium(IV) unsymmetrical salophen complex supported on silica- coated CoFe2O4 magnetic nanoparticles. J. Iranian Chem. Soc. 2024. Vol. 21. P. 3013–3034. https://doi.org/10.1007/s13738-024-03128-1

Aliavazi M., Ardakani M. H., Naeimi A. Oxovanadium(IV) unsymmetrical salophen complex supported on modified silica-coated CoFe2O4 nanoparticles: a magnetically recoverable nanocatalyst for efficient and selective oxidation of sulfides and thiols. Inorg. Chem. Com. 2024. Vol. 160. Art. no. 111895. https://doi.org/10.1016/j.inoche.2023.111895

Allahresani A., Nasseri M. A. Highly efficient epoxidation of alkenes with m-chloroperbenzoic acid catalyzed by nanomagnetic Co(III)@Fe3O4/SiO2 salen complex. J. Chem. Sci. 2017. Vol. 129. P. 343–352. https://doi.org/10.1007/s12039-017-1229-y

Rakhtshah D. A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles. Coord. Chem. Rev. 2022. Vol. 467. P. 214. https://doi.org/10.1016/j.ccr.2022.214614

Bagherzadeh M., Bahjati M., Mortazavi-Manesh A. Synthesis, characterization and catalytic activity of supported vanadium Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation of alkenes and oxidation of sulfides. J. Organomet. Chem. 2019. Vol. 897. P. 200–206. https://doi.org/10.1016/j.jorganchem.2019.06.036

Maurya M. Vanadium complexes based polymer supported catalysts: a brief account of research from our group. Top Catal. 2018. Vol. 61. P. 1500–1513. https://doi.org/10.1007/s11244-018-1006-2

Maurya M. R., Saklani H., Agarwal Sh. Oxidative bromination of salicylaldehyde by potassium bromide/H2O2 catalysed by dioxovanadium(V) complexes encapsulated in zeolite–Y: a functional model of haloperoxidases. Catal. Commun. 2004. Vol. 5, no. 10. P. 563–568. https://doi.org/10.1016/j.catcom.2004.07.004

Thiol-yne click on nano-starch: an expedient approach for grafting of oxo- vanadium Schiff base catalyst and its use in the oxidation of alcohols / S. Verma, J. Le Bras, S. L. Jain, J. Muzart. Appl. Catal. A. 2013. Vol. 468. P. 334–340. https://doi.org/10.1016/j.apcata.2013.08.007

Strong adhesion and cohesion of chitosan in aqueous solutions / D. W. Lee, Ch. Lim, J. N. Israelachvili, D. S. Hwang. Langmuir. 2013. Vol. 29, no. 46. P. 14222–14229. https://doi.org/10.1021/la403124u

A chitosan supported peroxidovanadium (V) complex: synthesis, characterization and application as an eco-compatible heterogeneous catalyst for selective sulfoxidation in water / G. Saikia, K. Ahmed. S. R. Gogoi, M. Sharma, H. Talukdar, N. Islam. Polyhedron. 2019. Vol. 159. P. 192–205. https://doi.org/10.1016/j.poly.2018.11.028

Rayati S., Ashouri F. Pronounced catalytic activity of oxo-vanadium(IV) Schiff base complexes in the oxidation of cyclooctene and styrene by tert-butyl hydroperoxide. Comptes Rendus Chimie. 2012. Vol. 15, no. 8. P. 679–687. https://doi.org/10.1016/j.crci.2012.05.021

Chemo-selective oxidation of sulfide to sulfoxides with H2O2 catalyzed by oxo-vanadium/Schiff-base complex immobilized on modified magnetic Fe3O4 nanoparticles as a heterogeneous and recyclable nanocatalyst / H. Veisi, A. Rashtiani, A. Rostami, M. Shirinbayan, S. Hemmati. Polyhedron. 2019. Vol. 157. P. 358–366. https://doi.org/10.1016/j.poly.2018.09.034

Oxo-vanadium(IV) unsymmetrical Schiff base complex immobilized on γ- Fe2O3 nanoparticles: a novel and magnetically recoverable nanocatalyst for selective oxidation of sulfides and oxidative coupling of thiols / A. Mahdian, M. H. Ardakani, E. Heydari-Bafrooei, S. Saeednia. Appl. Organomet. Chem. 2021. Vol. 35, no. 4. https://doi.org/10.1002/aoc.6170

Hydroxylation of phenol catalyzed by oxovanadium (IV) of salen-type schiff base complexes with hydrogen peroxide / T. A. Alsalim, J. S. Hadi, E. A. Al-Nasir, H. S. Abbo, S. J. Titinchi. Catal. Lett. 2010. Vol. 136. P. 228–233. https://doi.org/10.1007/s10562-010-0326-z

Maurya M., Kumara R., Manikandan P. Polymer supported vanadium and molybdenum complexes as potential catalysts for the oxidation and oxidative bromination of organic substrates. Dalton Trans. 2006. No. 29. https://doi.org/10.1039/B600822D

Dioxovanadium(V) complexes of dibasic tridentate ligands encapsulated in zeolite- Y for the liquid phase catalytic hydroxylation of phenol using H2O2 as oxidant / M. R. Maurya, H. Saklani, A. Kumar, S. Chand. Catal. Lett. 2004. Vol. 93. P. 121–127. https://doi.org/10.1023/B%3ACATL.0000016959.93948.D7

Bezaatpour A. Immobilization of an oxovanadium(IV) tetradentate Schiff base complex on clay as a recyclable heterogeneous catalyst for the epoxidation of olefins. Reac. Kinet. Mech. Cat. 2014. Vol. 112. P. 453–465. https://doi.org/10.1007/s11144-014-0706-2

Maurya M. R., Kumar M., Arya A. Model dioxovanadium(V) complexes through direct immobilization on polymer support, their characterization and catalytic activities. Catal. Commun. 2008. Vol. 10. P. 187–191. https://doi.org/10.1016/j.catcom.2008.08.017

Chiral Schiff base complexes of copper (II), vanadium (IV) and nickel (II) as oxidation catalysts. X-ray crystal structures of [Cu (R-salpn)(OH)2] and [Cu (±-busalcx)] / S. Bunce, R. J. Cross, L. Farrugia, S. Kunchandy. L. L. Meason, K. W. Muir, M. O’Donnell, R. D. Peacock, D. Stirling, S. J. Teat. Polyhedron. 1998. Vol. 17, no. 23–23. P. 4179–4187. https://doi.org/10.1016/S0277-5387(98)00226-5

Five-Hydroxymethylfurfural oxidation to maleic acid by O2 over graphene oxide supported vanadium: solvent effects and reaction mechanism / L. Chai, X. Hou, X. Cui, H. Li, N. Zhang, H. Zhang, C. Chen, Y. Wang, T. Deng. Chem. Engin. J. 2020. Vol. 388. Art. no. 124187. https://doi.org/10.1016/j.cej.2020.124187

Novel organic-inorganic hybrid mesoporous silica supported oxo-vanadium Schiff base for selective oxidation of alcohols / S. Verma, M. Nandi, A. Modak, S. Jain, A. Bhaumik. Adv. Synth. Catal. 2011. Vol. 353, no. 11–12. P. 1897–1902. https://doi.org/10.1002/adsc.201100018

(Schiff-base)vanadium(V) complex-catalyzed oxidations of substituted bis(homoallylic) alcohols – stereoselective synthesis of functionalized tetrahydrofurans / J. Hartung, S. Drees, M. Greb, Ph. Schmidt, I. Svoboda, H. Fuess, A. Murso, D. Stalke. Europ. J. Org. Chem. 2003. Vol. 2003, no. 13. P. 2388–2408. https://doi.org/10.1002/ejoc.200200644

Electrochemical modified electrodes based on metal‐salen complexes / O. Fatibello‐Filho, E. R. Dockal, L. H. Marcolino‐Junior, M. F. S. Teixeira. Analytical. Lett. 2007. Vol. 40, no. 10. P. 1825–1852. https://doi.org/10.1080/00032710701487122

Salimi A., Mamkhezri H., Mohebbi S. Electroless deposition of vanadium–Schiff base complex onto carbon nanotubes modified glassy carbon electrode: Application to the low potential detection of iodate, periodate, bromate and nitrite. Electrochem. Commun. 2006. Vol. 8, no. 5. P. 688–696. https://doi.org/10.1016/j.elecom.2006.02.019

Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: synthesis, characterization, DFT and detailed in-silico confirmation / A. M. Abu-Dief, N. M. El-Metwaly, S. O. Alzahrani, A. M. Bawazeer, S. Shaaban, M. S. S. J. Mol. Liq. 2021. Vol. 322. Art. no. 114977. https://doi.org/10.1016/j.molliq.2020.114977

Evaluation of anti- hyperglycemic effect of synthetic Schiff base vanadium(IV) complexes / F. A. El-Saied, T. A. Salem, S. A. Aly, M. M. E. Shakdofa. Pharmachem. J. 2017. Vol. 51. P. 833–842. https://doi.org/10.1007/s11094-017-1702-4

Characterization and antidiabetic activity of salicylhydrazone Schiff base vanadium(IV) and (V) complexes / J. Szklarzewicz, A. Jurowska, M. Hodorowicz, G. Kazek, B. Mordyl, E. Menaszek, J. Sapa. Transition Met. Chem. 2021. Vol. 46. P. 201–217. https://doi.org/10.1007/s11243-020-00437-1

Highly active and recyclable heterogeneous iridium pincer catalysts for transfer dehydrogenation of alkanes / Zh. Huang, M. Brookhart, A. S. Goldman, S. Kundu, A. Ray, S. L. Scott, B. C. Vicente. Adv. Synth. Catal. 2009. Vol. 351. P. 188–206. https://doi.org/10.1002/adsc.200800615

Maurya M., Kumar N. Chloromethylated polystyrene cross-linked with divinylbenzene and grafted with vanadium(IV) and vanadium(V) complexes having ONO donor ligand for the catalytic activity. J. Mol. Cat. A. 2014. Vol. 383–384. P. 172–181. https://doi.org/10.1016/j.molcata.2013.12.006

Kompleksy vanadylu z immobilizovanym na aerosyli salitsylaliminom v reaktsii nyzkotemperaturnoho rozkladu ozonu / T. L. Rakytska, O. A. Holub, L. A. Raskola, O. Iu. Bandurko, A. S. Podmazko, I. V. Zuieva, L. L. Ped, V. O. Kudrenko. Ukr. khim. zhurn. 2001. Vol. 67, no. 10. P. 79–82. [in Ukrainian].

Mono- and bimetallic complexes of Mn(II), Co(II), Cu(II), and Zn(II) with schiff bases immobilized on nanosilica as catalyst in ozone decomposition reaction / T. Rakitskaya, A. Truba, E. Radchenko, A. Golub. Chem. Chem. Technol. 2018. Vol. 12, no. 1. P. 1–6. https://doi.org/10.23939/chcht12.01.001

Antyozonantna aktyvnist mono- ta bimetalnykh kompleksiv 3d-metaliv iz salitsylaliminopropilnymy hrupamy, immobilizovanymy na nanokremnezemi / T. L. Rakytska, A. S. Truba, Ye. O. Radchenko, O. A. Holub. Khimiia, fizyka ta tekhnolohiia poverkhni. 2016. Vol. 7, no. 1. P. 65–72. [in Ukrainian].

Manganese(II) complexes with Schiff bases immobilized on nanosilica as catalysts of the reaction of ozone decomposition / T. Rakitskaya, A. Truba, E. Radchenko, A. Golub. Nanoscale Res. Lett. 2015. Vol. 10. P. 472–481. https://doi.org/10.1186/s11671-015-1179-6

Kobayashi H., Watanabe R., Choyke P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013. Vol. 4, no. 1. P. 81–89. https://doi.org/10.7150/thno.7193

##submission.downloads##

Опубліковано

2025-06-27

Як цитувати

Малюк, М. В., & Голуб, О. А. (2025). СИНТЕЗ ТА ПРАКТИЧНЕ ЗАСТОСУВАННЯ ІММОБІЛІЗОВАНИХ КОМПЛЕКСІВ ВАНАДІЮ(IV) З ОСНОВАМИ ШИФА. Вісник Одеського національного університету. Хімія, 30(1(89), 37–59. https://doi.org/10.18524/2304-0947.2025.1(89).335191

Номер

Розділ

Статті