УДК 547.658.2

В. Ф. Аникин, В. В. Ведута, Н. Ф. Федько

Одесский национальный университет имени И. И. Мечникова ул. Дворянская, 2, 65082, Одесса; e-mail: anikin_vf@paco.odessa.ua

1,2-ПРОИЗВОДНЫЕ АЦЕНАФТИЛЕНА. ДЕГИДРОХЛОРИРОВАНИЕ ГАЛОГЕНЗАМЕЩЕННЫХ ЦИС- И ТРАНС-1,2-ДИХЛОРАЦЕНАФТЕНА В СИСТЕМЕ *i*-PrOK—*i*-PrOH

Оценены скорости дегидрохлорирования галогензамещенных *цис-* и *mpaнc*-1,2-дихлораценафтенов в системе *i*-PrOK-*i*-PrOH. Значительные различия скоростей позволяют надежно идентифицировать *цис-* и *mpaнc*-изомеры 1,2-дихлоридов аценафтена.

Ключевые слова: элиминирование, *цис*- и *транс*-1,2-дихлораценафтены, аценафтилен.

1,2-Дигалогенпроизводные аценафтена являются доступными и удобными исходными веществами для получения различных функциональных производных аценафтена: 1,2-диолов [1], их моно- и диацетатов [2, 3], аценафтиленов [4], а также благодаря циклическому строению представляют интерес как модельные соединения для изучения механизмов реакций, протекающих у алифатического атома углерода, в частности, реакций нуклеофильного замещения и элиминирования [5-7]. Как показали авторы работ [7—9], цис- и транс-изомеры 1,2-дихлор-, 1,2-дифтор- и 1,2-дибромаценафтена, являясь диастереомерами, имеют разные температуры плавления, дипольные моменты, а также имеют характерные различия в ЯМР ¹Н спектрах: химические сдвиги метиновых протонов *цис*-1,2дигалогенидов на 0,05—0,07 м.д. смещены в область более слабых полей по отношению к соответствующим сдвигам для *транс*-изомеров, и несимметрично замещенные в ароматическом ядре цис- и транс-изомеры имеют разный характер спин-спинового взаимодействия этих протонов. Все вышеперечисленные различия позволяют эффективно проводить их разделение и идентификацию. Однако существенным неудобством идентификации 1,2-дигалогенпроизводных на основании различий в ЯМР спектрах или значений дипольных моментов является необходимость синтеза обоих возможных диастереомеров. Для идентификации 1,2-дихлорзамещенных аценафтена мы попытались использовать особенности их химического поведения, а именно существенно различные скорости дегидрогалогенирования цис- и транс-1,2дигалогенпроизводных аценафтена под действием основания.

Изучению механизма элиминирования галогеноводородов посвящены работы [5—7]. Авторы работы [7] установили, что реакция дегидрогалогенирования *транс*-1,2-дигалогенидов аценафтена (бромхлор-, дихлор-, хлорфтор- и дифтор-) *трет*-бутоксидом калия в *трет*-бутаноле является (E1cb)_I процессом и протекает как *син*-элиминирование. С этим механизмом согласуется предпочтительное элиминирование HF от *транс*-1-хлор2-фтораценафтена и установленый порядок уходящих групп: F > Cl ~ Br. Карбанионный механизм согласуется с результатами работы [5], где установлено, что элиминирование HCl от *цис*-1,2-дихлораценафтена под действием NaOH в этаноле проходило в 750 раз быстрее, чем для *транс*-изомера. При использовании системы EtOK-EtOH скорость при *син*-элиминировании в ряду Br > Cl > F падает [7], на основании чего авторами был предположен E2 механизм. Однако обнаруженный эффект уходящих групп оказался небольшим и стадийный механизм поэтому не может быть полностью исключен. Для *анти*-элиминирования от *цис*-1,2-дигалогенаценафтенов в системе EtOK-EtOH наблюдается значительный эффект уходящей группы и влияния галогена в β-положении на скорость реакции [7], что дает основание постулировать синхронный E2 механизм.

Итак, для *цис*-1,2-дигалогенидов с высокоосновными реагентами реакция элиминирования, вероятно, протекает по анионоподобному E2 механизму, и скорость ее больше, чем с *транс*-изомером. В цитируемых работах [5—7], практически исчерпывающих список публикаций по кинетике элиминирования 1,2-дигалогенидов аценафтена, в качестве субстратов использованы лишь *цис*- и *транс*-1,2-дихлориды незамещенного аценафтена. Изучение реакционной способности серии замещенных в ядре 1,2-дихлоридов может привести к более убедительным заключениям о механизме обсуждаемой реакции.

С синтезом диастереомерных пар галогензамещенных 1,2-дихлораценафтена [8] появилась возможность сравнения скоростей их дегидрохлорирования в условиях, исключающих конкуренцию реакций элиминирования и замещения, а также возможность проявления полярного влияния заместителей в ароматическом ядре на скорость элиминирования. С целью расширения набора диастереомерных пар замещенных 1,2-дихлораценафтена дополнительно были синтезированы цис- и транс-1,2-дихлориды 5,6-дихлор-, 5,6-дибром- и 3,5,6-трибромаценафтена (I д-ж, II д-ж). Синтез проводили по методикам получения 1,2-дихлоридов 5-галогензамещенных аценафтена, описанных в [8]. Строение синтезированных соединений было доказано методом ЯМР ¹Н спектроскопии. Также для полученных веществ были измерены дипольные моменты (табл. 1), которые определяли по второму методу Дебая [10] в бензоле при 25,0±0,1 °С в интервале массовых долей веществ 0,2—1,5%. Молярную поляризацию Р₂₀ вычисляли по методу Хальверштадта и Камлера [11] с аналитической экстраполяцией зависимостей $\varepsilon_{12} - w_2$ и $v_{12} - w_2$ в виде $\varepsilon_{12} = \varepsilon_1 + \alpha w_2$ и $v_{12} = v_1 + \beta w_2$ к «бесконечному» разбавлению (здесь и ниже индексы принадлежат: 1 – растворителю, 2 -веществу, 12 -раствору).

Массовую долю вещества, удельный объем и диэлектрическую проницаемость растворов вычисляли по формулам:

$$w_2 = m_2 / m_{12}$$
 ,
 $v_{12} = V_{12} / m_{12}$,
 $\epsilon_{12} = 1,2727 (c_{12} - c)/(c_1 - c) + 1$

где *w*, *m*, *v*, *V*, *c* — массовая доля, масса (г), удельный объем (см³·г⁻¹), объем (см³), электрическая емкость измерительной ячейки с воздухом в единицах прямоемкостной шкалы. Дипольный момент вычисляли по формуле

$$\mu = 0,01281 [298,15 (P_{2m} - MR_{D})]^{1/2}$$

где $P_{2^{\infty}}$ — молярная поляризация вещества, вычисляемая по формуле [12]:

$$P_{2\alpha} = M_r [3 \alpha v_1 / (\epsilon_1 + 2)^2 + (v_1 + \beta)(\epsilon_1 - 1) / (\epsilon_1 + 2)],$$

где M_r — молярная масса вещества; MR_D — молярная рефракция вещества для желтой линии натрия, вычисляемая из молярной рефракции аценафтена (52 см³) [13, 14], атомных рефракций водорода и заместителей X [14]:

$$MR_{D} = MR_{D} (AII) - nAR_{D}(H) + nAR_{D}(X)$$

Таблица 1

Д	ипольные	моменты	галогензамещенных	1,2	2-дихло	раценас	ртена
---	----------	---------	-------------------	-----	---------	---------	-------

No and		α	v ₁	ß	D	μ, Д	
л⊍ соед.	ε ₁			р	$P_{2^{\infty}}$	опыт	расчет*
Ід	2,2719	2,082	1,1437	-0,589	212,0	2,57	3,75
Πд	2,2733	0,481	1,1440	-0,571	99,5	1,04	2,23
Ie	2,2724	2,342	1,1443	-0,223	208,7	2,59	3,66
IIe	2,2729	0,617	1,1444	-0,402	98,4	1,15	2,11
Іж	2,2723	1,901	1,1443	-0,718	222,8	2,60	3,55
ІІж	2,2721	1,079	1,1443	-0,634	163,0	1,95	3,25

* — вычислено по векторно-аддитивной схеме [10] с учетом геометрии молекул *цис-* и *транс-*1,2-дихлораценафтенов [15, 16] и моментов связей C-Hlg [10].

Константы скоростей реакции дегидрохлорирования *цис-* и *mpaнc-*1,2-дихлоридов 5-бром-, 5-хлор-, 5-фтор-, 5,6-дихлор-, 5,6-дибром- и 3,5,6-трибромаценафтена (схема 1) определяли при температуре 20°С, убедившись, что в результате действия *i*-PrOK в *i*-PrOH на серию этих 1,2-дихлорпроизводных аценафтена действительно образуются лишь продукты элиминирования.

Схема 1

Ход реакций дегидрохлорирования контролировали спектрофотометрически. Электронные спектры поглощения исходных цис- и транс-1,2-дихлоргалогензамещенных аценафтенов и продуктов реакции элиминирования — 1-хлоргалогензамещенных аценафтиленов (III) — отличаются до такой степени, что для регистрации кинетической кривой было возможным в качестве аналитических длин волн использовать длинноволновой максимум в спектре 1-хлораценафтиленов (III). Характерными являются различия в спектрах транс-5-бром-1,2-дихлораценафтена и продукта его дегидрохлорирования — 5-бром-1-хлораценафтилена (рис.). Аналитические длины волн, использованные при регистрации кинетических кривых в случае замещенных 1,2-дихлораценафтена, приведены в экспериментальной части.

УФ спектры *транс*-5-бром-1,2-дихлораценафтена (1) и 5-бром-1-хлораценафтилена (2), (*i*-PrOH, l = 1,002 см, $c = 1.10^{-4}$ моль/л)

транс-1,2-Дихлориды реагировали сравнительно медленно. Это позволило фиксировать расходование субстратов без особых трудностей (табл. 2). Для обеспечения приемлемой скорости образования 1-хлораценафтиленов из цис-1,2-дихлоридов галогензамещенных аценафтена и возможности ее измерения, концентрацию изопропилата калия (ИПК) пришлось снизить до $(3-3,3)\cdot10^{-4}$ моль/л. Для стандартизации использовали метод определения концентрации *i*-PrOK, основанный на чрезвычайно большой реакционной способности цис-1,2-дибромаценафтена, по количеству 1-бромаценафтилена, образующегося из *i*-PrOK в избытке цис-1,2-дибромаценафтена [17].

Таблица 2

D G	Исходные концентра- ции, моль/л		k_{2} , 10 ² ,	NG	Исходные концентра- ции, моль/л		k_{a} :10 ² ,	
JNo	[<i>i</i> -PrOK] ·10 ⁴	[Субстрат] ·10 ⁵	л/(мольс)	JNº	[<i>i</i> -PrOK] ·10 ⁴	[Субстрат] ·10 ⁵	л/(мольс)	
Ia	3,24	8,69	4708	IIa	238	8,44	16,0	
Іб	3,24	8,70	2195	ІΙб	258	8,45	13,5	
Ів	3,24	8,76	1107	ΙІв	258	8,43	3,85	
Іг	3,24	8,68	130	Пг	258	8,48	0,15	
Ід	3,24	8,69	55000*	Πд	15,5	8,40	169	
Ie	3,24	8,69	23000*	IIe	15,5	8,52	130	
Іж	3,24	8,66	31000*	ІІж	15,5	8,48	159	

Константы скоростей реакций дегидрохлорирования замещенных *цис*и *mpaнc*-1,2-дихлораценафтена в системе *i*-PrOK-*i*-PrOH (*t*=20.0±0.1°C)

— Оценочные величины.

Для 5-галогенозамещенных *цис*- и *транс*- 1,2-дихлораценафтенов наблюдается хорошая корреляция с о-константами Гаммета заместителей:

иис-изомеры: $\lg k = 5,17 \sigma + 0,37, r = 0,90;$

транс-изомеры: $\lg k = 4,45 \sigma - 1,83, r = 1$.

Видно, что с увеличением σ-константы скорость реакции увеличивается. Это свидетельствует об анионном переходном состоянии, что согласуется с известными литературными данными по дегидрогалогенированию *mpaнс*изомеров со смешанными галогенами (бромхлор-, дихлор-, хлорфтор- и дифтор-), которые идентифицировали механизм этой реакции как E1cb [7].

В дополнение к полученным данным мы провели дегидрохлорирование *цис*- и *mpaнc*-1,2-дихлораценафтена и *mpaнc*-5-бром-1,2-дихлораценафтена *i*-PrOK в *i*-PrOD. Оказалось, что в процессе реакции для первых двух веществ дейтерообмена практически не наблюдается. В случае *mpaнc*-5бром-1,2-дихлораценафтена около 11% продукта элиминирования содержит дейтерий. Эти результаты позволяют уточнить положение пути дегидрохлорирования незамещенных 1,2-дихлоридов в спектре механизмов элиминирования как близкого к (E1cb)₁, а для *mpaнc*-5-бром-1,2-дихлораценафтена — смещенных в сторону анионного механизма, близкого к (E1cb)_р

Для незамещенных *транс-* и *цис*-1,2-дихлораценафтенов, их 5-галогензамещенных, а также *транс*-дихлоридов 5,6- и 3,5,6-галогензамещенных эффективные константы скоростей (табл. 2) определены достаточно точно, о чем свидетельствуют статистические оценки для этих величин. Для *цис*-1,2-дихлор-5-галогензамещенных использованная методика определения констант, очевидно, достигает предела необходимой точности. Даже при снижении концентрации *i*-PrOK для них удается регистрировать кинетическую кривую (после проведения смешения субстрата и реагента), начиная лишь со степеней превращения субстрата в 30-40%. Еще в большей степени методика оказывается несовершенной для 5,6- и 3,5,6-галогензамещенных цис-1,2-дихлораценафтена. В случае этих соединений реакция практически завершается за время смешения реагентов. По этой причине величины k_2 для 5,6-дихлор-, 5,6-дибром- и 3,5,6-трибромзамещенных цис-1,2-дихлораценафтена являются лишь оценочными. В дальнейшем, очевидно, придется использовать для определения скорости дегидрохлорирования этих соединений иные, например, струйные методы [18].

Выбранный кинетический тест для подтверждения конфигурации 1,2-дихлоридов оказался вполне надежным. Для 5-замещенных 1,2-дихлораценафтена можно ожидать, что установление конфигурации по результатам абсолютных кинетических измерений, т. е. только для одного из изомеров, может оказаться вполне определенным.

Экспериментальная часть

Реакцию дегидрохлорирования проводили непосредственно в кварцевых кюветах на установке, включающей спектрофотометр СФ-26 с термостатированным блоком для кювет. ЯМР ¹Н спектры измерены на приборе Bruker WM 250, растворитель CDCl₃, эталон — ТМС. УФ спектры регистрировали на спектрофотометре Specord UV-Vis, растворитель *i*-PrOH.

цис- и *транс-*1,2-Дихлорзамещенные 5-галогенпроизводных аценафтена (**Іа-г**, **ІІа-г**) получали по методу [8].

цис-1,2-Дихлор-5,6-дибромаценафтен (Ід). Раствор 2 г (6,45 ммоль) 5,6дибромаценафтилена в 22 мл четыреххлористого углерода при 4—5 °С насыщали сухим хлором до привеса 0,48 г, после чего выдерживали 2 ч. Отфильтровали 1 г продукта с т.пл. 175—176 °С. После кристаллизации из хлороформа получили 0,45 г дихлорида (Ід) (18,3 %) в виде светло-оранжевых игл, т.пл. 185—186°С [19]. Спектр ЯМР ¹Н, δ , м.д., *J*, Гц: 5,79 с (2H), (H¹+H²); 7,41 д (2H), J_{34} =7,5 (H³+H⁸); 7,98 д (2H), J_{78} =7,5 (H⁴+H⁷).

транс-1,2-Дихлор-5,6-дибромаценафтен (IIд). К перемешиваемой смеси 1,3 г (15 ммоль) диоксида марганца, 3,1 г (10 ммоль) 5,6-дибромаценафтилена и 10 мл тетрагидрофурана при 45°С постепенно добавили 6,5 г (60 ммоль) триметилхлорсилана (TMCS), после чего выдержали при 60°С в течение 45 мин. Наблюдалось потемнение и увеличение вязкости раствора. Смесь охладили, разбавили 50 мл воды и экстрагировали бензолом. Экстракт промыли водой, сушили хлоридом кальция, испарили растворитель и получили 3,7 г продукта. После двукратной кристаллизации из хлороформа получили 0,5 г чистого дихлорида (IIд) (13,1%) в виде светло-оранжевых игл, т.пл. 184,5—185,5°С. При смешении с образцом *цис*дихлорида (Iд) наблюдалась депрессия температуры плавления. Спектр ЯМР ¹H, δ , м.д., *J*, Гц: 5,65 с (2H), (H¹+H²); 7,41 д (2H), J_{34} =7,5 (H³+H⁸); 7,02 д (2H), J_{78} =7,5 (H⁴+H⁷). УФ спектр, $\lambda_{_{макс}}$, нм (Igɛ): 302 (3,91), 315 (4,07), 329 (3,95), 334 (3,91). Найдено, %: С 37,80, 37,91; H 1,66, 1,70; Cl+Br 60,17, 60,40. С₁₂Н₆Br₂Cl₂. Вычислено, %: С 37,84; H 1,59; Cl+Br 60,58. *цис*-1,2,5,6-Тетрахлораценафтен (Ie). Раствор 2,21 г (10 ммоль) 5,6-дихлораценафтилена в 22 мл четыреххлористого углерода при 4—5°С насыщали сухим хлором до привеса 0,72 г, после чего выдержали 2 ч. Отфильтровали 0,9 г продукта (Ie). После кристаллизации из дихлорэтана получили 0,39 г (13,4 %) светло-оранжевых игл, т.пл. 171—172°С [19]. Спектр ЯМР ¹H, δ , м.д., *J*, Гц: 5,82 с (2H), (H¹+H²); 7,48 д (2H), J_{34} =7,5, (H³+H⁸); 7,68 д (2H), J_{78} =7,5 (H⁴+H⁷).

транс-1,2,5,6-Тетрахлораценафтен (IIe). Получали аналогично (IIд), используя 1,3 г (15 ммоль) диоксида марганца, 2,21 г (10 ммоль) 5,6-дихлораценафтилена в 10 мл ТГФ и 6,5 г (60 ммоль) ТМСЅ. Получили 2,75 г продукта, после двукратной кристаллизации которого из хлороформа получили 0,75 г (25,7 %) чистого тетрахлорида (IIe), т. пл. 180—181,5°С. Спектр ЯМР ¹H, δ, м.д., *J*, Гц: 5,68 с (2H), (H¹+H²); 7,50 д (2H), J_{34} =7,5 (H³+H⁸); 7,72 д (2H), J_{78} =7,5 (H⁴+H⁷). УФ спектр, $\lambda_{{}_{MAKC}}$, нм (lgɛ): 299 (3,89), 311 (4,05), 325 (3,91). Найдено, %: С 49,30, 49,52; H 2,13, 2,15; Cl+Br 48,57, 48,80. С₁₂H₆Cl₄. Вычислено, %: С 49,36; H 2,07; Cl+Br 48,57.

цис-3,5,6-Трибром-1,2-дихлораценафтен (Іж). В раствор 3 г 3,5,6-трибромаценафтилена в 25 мл хлороформа пропускали хлор до привеса 0,6 г. Раствор охладили до 4—6 °С и выдержали 30 мин, после чего отфильтровали 0,9 г продукта. После кристаллизации из хлороформа получили 0,65 г (18 %) чистого дихлорида (Іж) в виде бесцветных кристаллов, т.пл. 186—187 °С. Спектр ЯМР ¹H, δ , м.д., *J*, Гц: 5,80 кв (1H), J_{12} =6,6, J_{18} =1,0 (H¹); 5,83 д (1H), J_{12} =6,6 (H²); 8,32 с (1H), (H⁴); 7,85 д (1H), J_{78} =7,5 (H⁷), 7,45 д (1H), J_{78} =7,5, J_{18} =1,0 (H⁸). УФ спектр, $\lambda_{\text{макс}}$, нм (lgɛ): 303 (3,79), 312 (3,87), 323 (3,74). Найдено, %: С 31,35; H 1,10; Cl+Br 67,56.

транс-3,5,6-Трибром-1,2-дихлораценафтен (ІІж). Получали аналогично (ІІд), используя 0,77 г (8,85 ммоль) диоксида марганца, 2,3 г (5,91 ммоль) 3,5,6-трибромценафтилена в 20 мл ТГФ и 3,85 г (35,6 ммоль) ТМСЅ. Получили 2,65 г продукта, после двукратной кристаллизации которого из хлороформа получили 1 г (36,8 %) транс-3,5,6-трибром-1,2-дихлораценафтена (ІІж), т.пл. 208,5—209,5 °С. Спектр ЯМР ¹Н, δ, м.д., *J*, Гц: 5,71 д (1Н), J_{18} =0,8 (Н¹); 5,67 с (1Н), (H²); 8,37 с (1Н), (H⁴); 7,88 д (1Н), J_{78} =7,5 (H⁷), 7,45 д (1Н), J_{78} =7,5, J_{18} =0,8 (H⁸). УФ спектр, $\lambda_{\text{макс.}}$, нм (lgɛ): 300 (3,80), 312 (3,91), 323 (3,77). Найдено, %: С 31,23, 31,20; Н 1,20, 1,23; Cl+Br 67,71, 67,50. С₁₀H₅Br₃Cl₂. Вычислено, %: С 31,35; Н 1,10; Cl+Br 67,56.

Определение концентрации раствора *i*-PrOK–*i*-PrOH [17]. В мерную колбу поместили 1—5 мл (3—15)·10⁻⁴ М раствора *цис*-1,2-дибромаценафтена в изопропаноле и 1—5 мл (1,0—1,3)·10⁻³ М раствора *i*-PrOK в *i*-PrOH (соотношение концентраций 1:3). Испытуемый раствор *i*-PrOK выдержали при 90±2°C 1 ч, смесь охладили, довели изопропанолом до 25 мл и фотометрировали (λ =346 нм) относительно раствора *цис*-1,2-дибромаценафтена той же концентрации. По экспериментально установленной калибровочной зависимости для 1-бромаценафтилена рассчитали истинную концентрацию *i*-PrOK. Методика проведения кинетических измерений. Готовили исходные растворы 1,2-дихлорида и *i*-PrOK (табл. 2) и термостатировали их при $20\pm0,1$ °C в течение 40 мин. Растворы быстро смешали, одновременно включая секундомер и начиная регистрацию пропускания измерительной кюветы самописцем относительно раствора *i*-PrOK действующей концентрации. Параллельно определяли оптическую плотность раствора с полным превращением 1,2-дихлорида в 1-хлораценафтилен. Для этого смешивали исходный раствор субстрата с избытком основания, выдерживали смесь при 90±1 °C в течение 1 ч. Фотометрировали полученный раствор 1хлораценафтилена относительно раствора *i*-PrOK, взятого для дегидрохлорирования. Полученные данные обрабатывали, используя кинетическое уравнение второго порядка [21].

Фотометрирование проводили на аналитической длине волны для: *цис*- и *mpahc*-1,2-дихлораценафтенов (**Ir**, **IIr**) — 342 нм (lg ε 3,71), *цис*- и *mpahc*-5-бром-1,2-дихлораценафтенов (**Ia**, **IIa**) — 353 нм (lg ε 3,84), *цис*и *mpahc*-1,2,5-трихлораценафтенов (**I6**, **II6**) — 351 нм (lg ε 3,77), *цис*- и *mpahc*-1,2-дихлор-5-фтораценафтенов (**IB**, **IIB**) — 345 нм (lg ε 3,73), *цис*- и *mpahc*-5,6-дибром-1,2-дихлораценафтенов (**Iд**, **IIд**) — 367 нм (lg ε 3,88), *цис*- и *mpahc*-1,2,5,6-тетрахлораценафтенов (**Ie**, **IIe**) — 363 нм (lg ε 3,82) и *цис*- и *mpahc*-3,5,6-трибром-1,2-дихлораценафтенов (**Iж**, **IIж**) — 366,5 нм (lg ε 3,88).

Изопропанол-D. 51,5 мл изопропилацетата нагревали в течение 26 ч с раствором NaOD в D_2O , приготовленном из 14 г металлического натрия и 25 мл D_2O , после чего отогнали образовавшийся *i*-PrOD, сушили его ВаO и повторно перегоняли. Получили 25 мл *i*-PrOD, в котором по данным ГЖХ анализа содержание основного вещества составило 99,6%.

Сравнительное дегидрохлорирование в *i*-PrOK-*i*-PrOH и *i*-PrOK-*i*-PrOD. 0,0612 г цис-1,2-дихлораценафтена выдержали при 20±0,1 °C с 5 мл 0,22 М раствора *i*-PrOK в *i*-PrOD. Выдержку продолжили при 90°C в течение 2 ч, после чего реакционную смесь разбавили водой и продукт дегидрохлорирования экстрагировали бензолом, экстракт сушили сульфатом натрия, растворитель испарили. Опыт повторили в растворе *i*-PrOH. Полученные продукты анализировали методом масс-спектрометрии, а степень дейтерообмена (ДО) рассчитывали таким образом:

$$\mathcal{AO} = \frac{k}{k+1} \cdot 100\%,$$

где k = $\left(\frac{\sum \frac{(M+1)}{M}}{n_1}\right)_D - \left(\frac{\sum \frac{(M+1)}{M}}{n_2}\right)_H$; М, (M+1) — интенсивность пиков, соот-

ветствующих молекулярному иону (M^+) и иону $(M^+1)^+$ в масс-спектрах продуктов дегидрохлорирования в дейтерированном (D) и недейтерированном (H) спиртах; n_1 , n_2 — количество спектрограмм.

Список литературы

- Graebe C., Jequier J. Ueber Acenaphthenon // Lieb. Ann. 1896. Bd. 290. S. 195— 204.
- 2. Петренко Г. П., Аникин В. Ф. Галогенпроизводные аценафтиленгликоля. II. 5-Галогензамещенные аценафтиленгликоля. // Журн. орган. химии. — 1973. — Т.9, № 4. — С. 786—791.
- 3. Петренко Г. П., Аникин В. Ф. Галогенпроизводные аценафтиленгликоля. І. Синтез 5,6-дихлораценафтиленгликоля. // Журн. орган. химии. 1972. Т. 8, № 5. С. 1061—1064.
- 4. Аникин В. Ф., Фадель М. А. 1,2-Производные аценафтилена XII. Дебромирование галогензамещенных Е-1,2-дибромаценафтена // Журн. орган. химии. — 1994. — Т. 30, № 2. — С. 273—275.
- Cristol S. J., Stermitz F. R., Ramey P. S. Mechanisms of elimination reactions. XVII. The cis- and trans-1,2-dichloroacenaphthenes; trans-dibromoacenaphthene // J.Am. Chem. Soc. — 1956. — Vol. 78, № 11. — P. 4939—4941.
- Bacciocchi E., Ruzziconi R., Sebastiani G. V. Irreversible E1cB mechanism in the syn elimination from 1,2-dihaloacenaphthenes promoted by potassium tert-butoxide // J. Chem. Soc. Chem. Commun. 1980. №17. P. 807—808.
- Bacciocchi E., Ruzziconi R., Sebastiani G.V. Concerted and stepwise mechanisms in the elimination from 1,2-dihaloacenaphthenes promoted by potassium *tert*-butoxide and potassium ethoxide in the corresponding alcohols // J. Org. Chem. 1982. Vol. 47, № 17. P. 3237—3241.
- Аникин В. Ф., Фадель М. А. 1,2-Производные аценафтилена. XIII. Синтез и установление конфигурации 5-галогензамещенных 1,2-дихлораценафтена // Журн. орган. химии. — 1994. — Т. 30, № 2. — С. 276—280.
- Anikin V. F., Veduta V. V., Merz A. Stereochemistry of the addition of bromine to acenaphthylene derivatives: substituent and solvent effects // Monatsh. Chem. — 1999. — Vol. 130, № 5. — P. 681—690.
- Минкин В. И., Осипов О. А. Жданов Ю. А. Дипольные моменты в органической химии. — Л.: Химия, 1968. — 248 с.
- Halverstadt J. F., Kumler W. D. Solvent polarization error and its elimination in calculating dipole moments // J. Am. Chem. Soc. — 1942. — Vol. 64, № 12. — P. 2988—2992.
- 12. Urbanski T., Wolff M. Acenaftenon-1 i jego pochodne. I. O selektywnym utlenianiu acenaftenu i jego nitrowych pochodnych // Roczn. chem. 1965. Vol. 39, № 10. P. 1447—1452.
- Rogers M. T., Cristol S. J. The electric moments and configurations of some cis trans isomers // J. Am. Chem. Soc. 1955. Vol. 77, № 2. P. 764-765.
- 14. Cantrell T. S., Shechter H. Reactions of dinitrogen tetroxide with acenaphthylene. Diels-Alder reactions and photodimerizations of 1-nitro- and 1,2-dinitroacenaphthylenes // J.Org.Chem. 1968. Vol. 33, № 1. P. 114-118.
- 15. Bernardinelli G., Gerdil R. The crystal and molecular structure of cis-1,2-dichloroacenaphthene // Acta crystallogr. — 1974. — Vol. B 30, № 6. — P. 1594—1597.
- 16. Le Bihan P.R.T., Perucaud M.C. Structures atomicues du trans-1,2-dibromoacenaphthene antipodes // Acta crystallogr. — 1972. — Vol. B 28, № 2. — P. 629—634.
- 17. Левандовская Т. И. Синтез и свойства 1,2-дигалогензамещенных аценафтена и их производных: Дис. ... канд. хим. наук. Одесса, 1988. 192 с.
- Методы исследования быстрых реакций / Под ред. Хеммис Г. М.: Мир, 1977. 716 с.
- 19. Петренко Г. П., Усаченко В. Г., Шепетуха Н. С. Галогенопроизводные аценафтилена. VII. // Журн. орган. химии. 1970. Т. 6, № 11. С. 2316—2319.
- 20. Петренко Г. П., Тельнюк Е. Н. Галоидпроизводные аценафтилена // Журн.орган. химии. — 1966. — Т. 2, № 4. — С. 722—727.
- 21. Денисов Е. Т. Кинетика гомогенных химических реакций. М.: Высшая школа, 1978. — 367 с.

В. Ф. Анікін, В. В. Ведута, Н. Ф. Федько

Одеський національний університет імені І. І. Мечникова вул. Дворянська, 2, 65082, Одеса, Україна; e-mail: anikin_vf@paco.odessa.ua

1,2-ПОХІДНІ АЦЕНАФТИЛЕНУ. ДЕГІДРОХЛОРУВАННЯ ГАЛОГЕНОЗАМІЩЕНИХ *цис-* і *транс-*1,2-ДИХЛОРОАЦЕНАФТЕНУ В СИСТЕМІ *i*-PrOK–*i*-PrOH

Резюме

Оцінено швидкості дегідрохлорування галогенозаміщених *цис*- і *mpaнc*-1,2-дихлороаценафтенів в системі *i*-PrOK–*i*-PrOH. Значні відмінності швидкостей дозволяють надійно ідентифікувати *цис*- і *mpaнc*- ізомери дихлоридів аценафтену.

Ключові слова: елімінування, *цис*- і *транс*-1,2-дихлороаценафтени, аценафтилен.

V. F. Anikin, V. V. Veduta, N. F. Fed'ko

Odessa National University, Department of Organic Chemistry, Dvoryanskaya St, 2, Odessa, 65082, Ukraine

1,2-DERIVATIVES OF ACENAPHTHYLENE. DEHYDROCHLORINATION OF HALOGENOSUBSTITUTED *cis*-AND *trans*-1,2-DICHLOROACENAPHTHENES IN THE SYSTEM *i*-PrOK-*i*-PrOH

Summary

The rates of dehydrochlorination in core halogenosubstituted *cis*- and *trans*-1,2-dichloroacenaphthenes promoted by *i*-PrOK in *i*-PrOH have been evaluated. Considerable rate differences allow to identify dichlorides as *cis*- and *trans*- isomers.

Key words: elimination, cis- and trans-1,2-dichloroacenaphthenes, acenaphthylene.