УДК 54.128.13:541.124:542.943.7:546.262.3-31:546.92'284

Т. Л. Ракитська, Т. О. Кіосе, В. Я. Волкова, О. Л. Барбул Одеський національний університет імені І. І. Мечникова, кафедра неорганічної хімії та хімічної екології, вул. Дворянська, 2, Одеса, 65082, Україна; e-mail: TLR@onu.edu.ua

ОБҐРУНТУВАННЯ СПОСОБУ ОДЕРЖАННЯ КАТАЛІЗАТОРА НА ОСНОВІ Рd(II), Cu(II) I БАЗАЛЬТОВОГО ТУФУ ДЛЯ НИЗЬКОТЕМПЕРАТУРНОГО ОКИСНЕННЯ МОНООКСИДУ ВУГЛЕЦЮ КИСНЕМ

Вивчено вплив способів попередньої обробки базальтового туфу і нанесення компонентів на активність каталізатора низькотемпературного окиснення монооксиду вуглецю киснем.

Ключові слова: каталізатор, базальтовий туф, монооксид вуглецю, окиснення, нанесені палладій(II), купрум(II).

Протягом приблизно 50 років склад каталізатора, спочатку запропонований для Вакер-процесу, зазнав істотних змін. В даний час на його основі розроблені нанесені системи, що складаються з ацидо- або гідроксоацидокомплексів металу платинової групи (найчастіше паладію або платини), а також ацидокомплексів купруму(II) і/або заліза(III), а в деяких випадках — гетерополікомплексів (ГПК). В якості носіїв запропоновані різноманітні неорганічні оксиди, активоване вугілля, алюмосилікати, природні діатоміти та ін. Активність таких систем залежить не тільки від концентрацій іонів перехідних металів і їхнього співвідношення, але і від концентрацій галогенід-іонів, кисневмісних аніонів, кислотності поверхні носія, активності адсорбованої води, вмісту в газоповітряній суміші CO і O₂. Наші дослідження дозволили не тільки розробити нові каталітичні композиції, але і зробити деякі теоретичні висновки щодо факторів, що впливають на активність нанесених металокомплексних каталізаторів (НМКК), і можливості прогнозування активності НМКК при використанні в якості носіїв неорганічних оксидів зі слабко вираженими іонообмінними властивостями [1].

Завдання ускладнюється, якщо в якості носія металокомплексів використовуються цеоліти (природні і синтетичні). На реакційну (каталітичну) здатність іонів перехідних металів впливають багато чинників [2—4]: цеолітна структура (топологія цеолітного каркасу; геометричні розміри вхідних вікон, каналів); співвідношення nSi/nAl; умови сорбції іонів перехідних металів; форма їх знаходження; топографічні місця локалізації M^{n+} і можливість їхньої координації з іншими лігандами; кислотні властивості цеолітів; можливість доступу інших реагентів, наприклад, газоподібних молекул, до місць локалізації іона M^{n+} ; наявність інших катіонів і аніонів, які впливають не тільки на локалізацію іонів M^{n+} і їхнє координаційне оточення, але і на рухомість іонів взагалі і, особливо, іонів водню. Завдання ще більш ускладнюється, якщо використовуються саме природні цеоліти, які відрізняються від синтетичних тим, що мають, як правило, перемінний фазовий склад.

Методики експерименту

В якості носія металокомплексного каталізатора використовували природний (П-БТ) і кислотно-модифікований (Н-БТ) базальтовий туф (родовища у Ровенської області), який у середньому містить у мас. %: клиноптилоліт і морденіт — 35—40, монтмориллоніт — 30—40, польовий шпат, кремнезем і гематит — решта.

В роботі використовували зразки П-БТ, які відрізняються своїм походженням: родовище Полоцьке II, глибина залягання — 50-70 м (П-БТ(1), H-БТ(1)); родовище Полоцьке II, глибина залягання — 20—30 м (П-БТ(1)^{*}, H-БТ(1)^{*}).

Модифікування зразків туфу здійснювали за наступною методикою: 50 г первинного туфу фракції 0,5—3,0 мм поміщали в колбу зі зворотним холодильником, заливали 100 мл розчину модифікатору (азотна кислота, луг, етиловий спирт або вода) і кип'ятили протягом 3 годин. У разі кислотного модифікування зразки промивали водою до pH \cong 5. В інших випадках зразки промивали до сталого значення pH.

Зразки сушили в повітряному середовищі при 110 °С до постійної маси і використовували в якості носія металокомплексів.

Зразки каталізатора окиснення монооксиду вуглецю отримували методом імпрегнування: 10 г носія, середній розмір зерен — 0,75 мм (фракція 0,5—1,0 мм), просочували 4 мл водного розчину, що містить у заданих співвідношеннях хлорид паладію(II), нітрат або хлорид купруму(II) і бромід калію. Оскільки активність таких каталізаторів істотно залежить від вмісту води [1], для оптимізації їхнього складу і відтворюваності результатів отриманий вологий зразок сушили в повітряному середовищі при температурі 110 °С до постійної маси, а потім витримували в ексикаторі над розчином сірчаної кислоти (30—35 %) протягом 1 години так, щоб зразок адсорбував 0,03 г H₂O на 1 г носія. При такому вмісті води забезпечувалася динамічна рівновага за парою води при пропущенні скрізь шар каталізатора газоповітряної суміші (ГПС) з постійною відносною вологістю ($\phi_{\rm rпс}$) 76 %. Вміст компонентів каталізатора розраховували на одиницю маси сухого носія.

Кінетику каталітичного окиснення СО киснем вивчали на проточній по газу установці з термостатованим реактором вертикального типу з нерухомим шаром каталізатора. В газоповітряній суміші концентрацію монооксиду вуглецю варіювали від 100—300 мг/м³ (5—20 ГДК_{со}), концентрація кисню — 20 об.%. Початкову (С^{*n*}_{CO}) та кінцеву (С^{*k*}_{CO}) концентрації СО визначали за допомогою приладу "Газоанализатор 621ЭХО4" ("Аналітприлад", Україна), чутливість якого — 2 мг/м³. Швидкість реакції (W), константу першого порядку (k₁), ступінь перетворення СО (η_{ст}) розраховували за формулами:

$$W = \frac{\omega(C_{CO}^{n} - C_{CO}^{\kappa})}{m_{\kappa}} , \text{ моль/г·с,}$$
(1)

де $\omega = 1,67 \cdot 10^{-2}$ — об'ємна витрата ГПС, л/с; С^{*n*}_{CO}, С^{*k*}_{CO} — початкова і кінцева концентрації СО, моль/л; m_{*k*} — маса зразка каталізатора,

$$k_{I} = \frac{1}{\tau'} ln \frac{C_{CO}^{n}}{C_{CO}^{k}}, c^{-1},$$
 (2)

де т'-фіктивний час контакту,

$$\eta_{cm} = \frac{(C_{CO}^{n} - C_{CO}^{\kappa})}{C_{CO}^{n}} \cdot 100, \%.$$
(3)

Результати та їх обговорення

Вплив способу попередньої обробки базальтового туфу на активність каталізатора. Попередні дослідження [5] показали, що імпрегнуванням природного базальтового туфу водним розчином, що містить K_2PdCl_4 , CuX_2 (X = Cl⁻, NO₃⁻) і KBr, не вдається одержати каталізатор, який забезпечував би стаціонарне протікання реакції і високий ступінь окиснення монооксиду вуглецю киснем повітря. Вивчено вплив різних способів обробки базальтового туфу (сушіння при різних температурах, обробка водою, етиловим спиртом (для видалення органічних залишків), лугом і кислотою) на активність каталізатора (табл. 1). Як оцінні критерії в табл. 1 наведені дані про кінцеву концентрацію монооксиду вуглецю (C_{CO}^{κ}) через 10 хв. від початку подачі ГПС і в стаціонарному режимі, а також про ступінь перетворення CO у стаціонарному режимі (η_{cr}).

Кінетика окиснення СО у присутності каталізатора К_оPdCl₄-Cu(NO₂)₀-KBr-H₂O/БТ при різних способах попередньої обробки базальтового туфу представлена на рис.1а і 1б. З отриманих даних можна прийти до висновку, що тільки при кислотній обробці базальтового туфу досягаються умови формування Pd(II)-Cu(II)/БТ-каталізатора, що забезпечує окиснення CO киснем у стаціонарному режимі, коли на виході з реактора C $_{CO}^{\kappa}$ = const. Необхідно звернути увагу на наступні моменти. Природа кислоти (HCl або HNO₃) не впливає на кінцевий результат (рис.16), однак надалі для кислотного модифікування БТ використовували азотну кислоту, тому що NO₃⁻-іони адсорбуються носієм набагато слабкіше, ніж Cl⁻-іони, і легко відмиваються водою при кімнатній температурі. Кращий результат досягається при кислотно-термальній обробці БТ азотною кислотою. У випадку модифікування БТ 12М HNO₃ при кімнатній температурі протягом 24 год. каталізатор забезпечує стаціонарний перебіг реакції, але при цьому ступінь окиснення СО ($\eta_{cr} = 47~\%$) менше, ніж у випадку каталізатора Pd(II)-Сu(II)/H-БТ(1)*-6 (табл. 1).

Рис. 1. Зміна С $_{CO}^{\kappa}$ у часі при окисненні СО киснем у присутності каталізатора K_2 PdCl₄-Cu(NO₃)₂-KBr-H₂O/БТ при різних способах попередньої обробки БТ. Умови а: 1 — сушка при 110 °C; 2 — сушка при 300 °C; Обробка: 3 — гарячою водою; 4 — розчином ЗМ NaOH; 5 — розчином 6M NaOH; Умови б: кип'ятіння протягом 6 годин (H-БТ(1)*-6): 1 — ЗМ HNO₃, 2 — ЗМ HCl; T = 293 K, 24 години (H-БТ(1)*-12M): 3 — 12M HNO₃

Таблиця 1

Вплив способу попередньої обробки базальтового туфу на активність каталізатора K₂PdCl₄-Cu(NO₃)₂-KBr-H₂O/БT у реакції окиснення CO киснем

		C_{CO}^{κ} , мг/м ³		η _{ст} ,
Каталізатор	Умови попередньої обробки	через 10 хв	у стац. режимі.	70
Pd(II)-Cu(II)/П-БТ(1)*— (110°C)	П-БТ сушили при 110 °С протягом 3 годин	85	_	_
Pd(II)-Cu(II)/П-БТ(1) [*] — (300°С)	П-БТ прожарювали при 300 °C протягом 3 годин	48	_	_
Рd(II)-Cu(II)/П-БТ(1) — (вода)	П-БТ кип'ятили 3 години у дис- тильованій воді, а потім промива- ли гарячою водою і сушили при 110 °С протягом 3 годин	180		
Pd(II)-Cu(II)/П-БТ(1)* — (спирт)	П-БТ заливали на 24 години етиловим спиртом у співвідношенні спирт : вода = 1:1, а потім промивали гарячою водою і сушили при 110 °С протягом 3 годин	70	_	
Рd(II)-Cu(II)/П-БТ(1) — (луг)	П-БТ кип'ятили 3 години безперер- вно у 3М NaOH, а потім відмивали до постійного значення pH і суши- ли при 110 °С протягом 3 годин	160		_
	П-БТ кип'ятили 3 години безперер- вно у 6М NaOH, а потім відмивали до постійного значення pH і суши- ли при 110 °С протягом 3 годин	160	_	
Pd(II)-Cu(II)/H-BT(1)*	П-БТ заливали на 24 години 12М $\rm HNO_3$, а потім відмивали до $\rm pH\approx5,0$ і сушили при 110 °С протягом 3 годин	165	160	47
Pd(II)-Cu(II)/H-BT(1)*-6	П-БТ кип'ятили 6 годин безперер- вно у 3М HNO_3 , а потім відмивали до рH $\approx 5,0$ і сушили при 110 °C протягом 3 годин	35	80	73
	П-БТ кип'ятили 6 годин безпере- рвно у 3M HCl, а потім відмивали до pH ≈ 5,0 і сушили при 110 °C протягом 3 годин	38	82	73

 $\begin{array}{l} C_{_{PdCl_{2}}}=1,36\cdot 10^{-5};\ C_{_{Cu(NO_{3})_{2}}}=2,9\cdot 10^{-5};\ C_{_{KBr}}=1,02\cdot 10^{-4}\ \text{моль/r};\ C_{_{CO}}^{''}=300\ \text{мr/m}^{3};\\ U=4,2\ \text{cm/c};\ T=293\ \text{K};\ m_{_{H_{3}O}}=0,03\ \text{r/r};\ d_{_{3}}=1,5\ \text{mm} \end{array}$

Вплив модифікування БТ при різній концентрації азотної кислоти на активність каталізатора. Найбільш діючим способом зміни фізико-хімічних властивостей природних цеолітів є обробка їх мінеральними кислотами (HCl, HNO₃, H₂SO₄, HClO₄), у результаті чого відбуваються декатіонування і деалюмінуванння, що приводить до «розширення вхідних вікон» у канали, зміни кислотних і іонообмінних властивостей природних цеолітів [6-8].

На активність каталізатора Pd(II)-Cu(II)/БТ впливає не тільки тривалість попередньої кислотної обробки базальтового туфу [5], але і концентрація застосовуваної для цього кислоти. Дані рис. 2 і табл. 2 демонструють зміну активності каталізатора K_2 PdCl₄-Cu(NO₃)₂-KBr-H₂O/H-БT(1) у залежності від концентрації азотної кислоти, узятої для попередньої обробки носія. Концентрацію азотної кислоти варіювали від 3 до 10 моль/л, і зразки БТ кип'ятили в ній протягом трьох годин. Видно, що в усіх випадках окиснення CO відбувалося в стаціонарному режимі, але найкращі кінетичні характеристики (W_{ст}, k₁ і η_{ст}) досягалися у випадку каталізатора на H-БT(1)-6M (C^{κ}_{CO} = 20 мг/м³).

Рис. 2. Зміна С^{*K*}_{CO} у часі при окисненні СО киснем у присутності каталізатора K_2PdCl_4 -Cu(NO₃)₂-KBr-H₂O/БT(1). Носій оброблений кислотою різної концентрації: C_{HNO₃}, M: 1 — 3; 2 — 6; 3 — 8; 4 — 10; 5 — 12 (T = 293 K; 24 год) (C_{PdCl2} = 1,36·10⁻⁵; C_{Cu(NO3)2} = 2,9·10⁻⁵; C_{KBr} = 1,02·10⁻⁴ моль/г; C^{*n*}_{CO} = 300 мг/м³; U = 4,2 см/с; T = 293 K; m_{H,O} = 0,03 г/г; d₃ = 0,75 мм)

Таблиця 2

Каталітична активність ацидокомплексів Pd(II) і Cu(II), закріплених на кислотно-модифікованому базальтовому туфі, у реакції низькотемпературного окиснення монооксиду вуглецю киснем

H_2^{0}					
Носій	W _{ст} ·10 ⁹ , моль/(г·с) по (1)	С ^к _{CO} , мг/м ³ (стаціонарний режим)	k ₁ , с ⁻¹ по (2)	η _{ст} , % по (3)	
Н-БТ(1)-3М	15,1	48	2,6	84	
Н-БТ(1)-6М	16,8	20	3,8	93	
H-BT(1)-8M	12,9	85	1,8	72	
Н-БТ(1)-10М	12,0	100	1,6	67	
H-БТ(1)-12М (t = 20 °С; 24 год.)	8,4	160	0,9	47	

$$\begin{split} \mathrm{C_{p_{dCl_2}}} = & 1,36\cdot10^{.5}; \ \mathrm{C_{cu(NO_3)_2}} = 2,9\cdot10^{.5}; \ \mathrm{C_{KBr}} = & 1,02\cdot10^{.4} \ \text{моль/r}; \\ \mathrm{C_{CO}}^{\ n} = & 300 \ \text{мг/m}^3; \ U = & 4,2 \ \text{см/c}; \ \mathrm{T} = & 293 \ \text{K}; \ \varphi = & 76 \ \%; \ m_{\mathrm{H_o}0} = & 0,03 \ \text{г/r}; \ d_{_3} = & 0,75 \ \text{мм} \end{split}$$

На підставі отриманих результатів нами оптимізовані умови попереднього кислотного модифікування базальтового туфу, використованого для нанесення ацидокомплексів Pd(II), Cu(II) і інших компонентів, що формують каталізатор окиснення CO. Такими умовами є: однократне чи багаторазове кип'ятіння базальтового туфу в 3М HNO₃ протягом трьох годин з наступним відмиванням до постійного значення pH ~ 5,0. При цьому, навіть у випадку кратності таких обробок, рівної п'яти (сумарна тривалість обробки 15 год.), відповідно до даних РФА [9] цеолітна структура зберігається. Істотної аморфизації зазнає тільки фаза монтмориллоніту при 9-тигодинній кислотній обробці базальтового туфу.

Вплив способу нанесення компонентів на активність каталізатора. Каталізатори на основі металокомплексів і носіїв звичайно одержують методами адсорбції або імпрегнування. Показано [10], що зі змішаного розчину, який містить K_2PdCl_4 і CuX_2 (X = Cl⁻, NO₃⁻), зразки П-БТ і Н-БТ вибірково адсорбують купрум(II). Більш того, відомо [11-13], що сорбція Pd(II) із хлоридних і нітратних розчинів природними цеолітами (морденіт, клиноптилоліт) відбувається складним чином, наприклад, при pH 2-6 і $C_{cl^-} = 2,0\cdot10^{-2}$ моль/л паладій(II) зовсім не адсорбується клиноптилолітом. Застосування адсорбційного методу ускладнюється ще і тим, що до складу каталізатора входять бромід-іони, що здатні впливати на адсорбцію як Cu(II), так і Pd(II). На підставі наведених результатів застосування адсорбційного методу одержання Pd(II)-Cu(II)-каталізатора можна вважати недоцільним.

Імпрегнування носія з урахуванням його вологоємності здійснювали в одну стадію, тому що порядок нанесення компонентів каталітичної композиції не впливав на активність каталізатора. Беручи до уваги структурні і фізико-хімічні особливості цеолітів, слід зазначити, що найбільш істотним фактором, який впливає на активність каталізатора, є досягнення рівномірного розподілу компонентів, що особливо утрудняється зі збільшенням розміру зерен носія. У цьому зв'язку зразки після їх імпрегнування витримували в закритих чашках Петрі протягом 20 год. Після «дозрівання» каталізатор сушили до постійної маси.

На прикладі даних рис. З видно, що каталізатор $K_2 PdCl_4$ -Cu(NO₃)₂-KBr-H₂O/H-БT(1)*-12 після «дозрівання» протягом 20 год. забезпечував майже дворазове зниження C_{CO}^{κ} у стаціонарному режимі в порівнянні з каталізатором такого ж складу, висушеним відразу після імпрегнування.

Рис. 3. Зміна С $_{\rm CO}^{\kappa}\,$ у часі при окисненні СО киснем у присутності каталізатора $\rm K_2PdCl_4-Cu(NO_3)_2-KBr-H_2O/H-BT(1)^*-12$

1 — каталізатор, висушений відразу після імпрегнування; 2 — каталізатор перед сушкою «дозрівав» протягом 20 годин ($C_{PdCl_2} = 2,72 \cdot 10^{-5}; C_{Cu(NO_3)_2} = 2,9 \cdot 10^{-5}; C_{KBr} = 1,02 \cdot 10^{-4}$ моль/г; $C_{CO}^n = 300$ мг/м³; U = 4,2 см/с;

T = 293 K; $m_{_{\rm H_2O}}^{}$ = 0,03 г/г; $d_{_3}^{}$ = 1,5 мм; ϕ = 76 %)

Результати з оптимізації способів попереднього модифікування базальтового туфу та одержання каталізаторів з добре відтворюваними властивостями були використані при розробці технічних умов на каталізатор низькотемпературного окиснення монооксиду вуглецю киснем КНО-СО/БТ (ТУ У 24.6-02071091-001:2008).

Література

- 1. Ракитская Т. Л., Эннан А. А., Волкова В. Я. Низкотемпературная каталитическая очистка воздуха от монооксида углерода. Одесса: Экология, 2005. 191 с.
- Тагиев Л. Б., Миначев Х. М. Каталитические свойства цеолитов в реакции окисления // Успехи химии. — 1981. — Т. 50, вып. 11. — С. 1933—1959.
- Berthomieu D., Delahay G. Recent advanced in Cu^{1/II}Y: experiments and modeling // Catal. Reviews. — 2006. — Vol. 48, N 2. — P. 269—313.
- 4. Frising T., Leflaive P. Extraframework cation distribution in X and Y faujasite zeolites: A review // Micropor. Mezopor. Mater. 2008. Vol. 114, Iss. 1—3. P. 27—63.
- Ракитская Т. Л., Киосе Т. А., Волкова В. Я. Влияние деалюминирования природного цеолита на активность Pd(II)-Cu(II)-катализатора окисления монооксида углерода кислородом // Вісн. Одеськ. нац. ун-ту. — 2005. — Т. 10, вип. 2. — С. 184—191.
- 6. *Тарасевич Ю. И.* Природные сорбенты в процессе очистки вод. К.: Наукова думка, 1981. 208 с.
- Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite / O. Korkuna, R. Leboda, J. Skubiszewska-Zięba, T. Vrublews'ka, V.M. Gun'ko, J. Ryczkowski // Micropor. Mezopor. Mater. — 2006. — Vol.87, Iss.1-3. — P.243—254.
- Природные цеолиты / Г. В. Цицишвили, Т. Г. Андроникашвили, Г. Н. Киров, Л. Д. Филозова М.: Химия, 1985. 396 с.
- 9. Ракитская Т. Л., Киосе Т. А., Резник Л. И., Эннан А. А., Хитрич В. Ф. Рентгенофазовое исследование Pd(II)-Cu(II) катализатора, закрепленного на базальтовом туфе // Вісн. Одеськ. нац. ун-ту. Хімія. 2007. Т. 12, №. 2. С. 87—98.
- 10. Ракитская Т. Л., Киосе Т. А., Волкова В. Я. Адсорбционные свойства базальтового туфа и каталитическая активность закрепленных на нем ацидокомплексов Pd(II) и Cu(II) в реакции окисления монооксида углерода //Укр. хим. журн. 2008. Т. 74, № 4. С. 28—33.
- Коркуна О., Врублевська Т. Вплив різних факторів на сорбцію паладію(ІІ) природним клиноптилолітом у динамічних умовах // Вісник Львів. ун-ту. Серія хім. 2002. Вип. 41. — С. 134—138.
- 12. Коркуна О., Врублевська Т., Тепла Н. Вплив різних факторів на сорбцію паладію(II) Н-морденітом у статичних умовах // Вісник Львів. ун-ту. Серія хім. — 2004. — Вип. 44. — С. 120—126.
- Сорбция ионов палладия из водных растворов клиноптилолитом / Т. Ф. Врублевская, Л. В. Вронская, Н. М. Матвийчук, О. Я. Коркуна // Химия и технология воды. 1999. Т. 21, № 4. С. 414—418.

Т. Л. Ракитская, Т. А. Киосе, В. Я. Волкова, О. Л. Барбул Одесский национальный университет имени И.И. Мечникова, кафедра неорганической химии и химической экологии, ул. Дворянская, 2, Одесса, 65082, Украина; e-mail: TLR@onu.edu.ua

ОБОСНОВАНИЕ СПОСОБА ПОЛУЧЕНИЯ КАТАЛИЗАТОРА НА ОСНОВЕ Pd(II), Cu(II) И БАЗАЛЬТОВОГО ТУФА ДЛЯ НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА КИСЛОРОДОМ

Резюме

Изучено влияние способов предварительной обработки базальтового туфа и нанесения компонентов на активность катализатора низкотемпературного окисления монооксида углерода кислородом.

Ключевые слова: катализатор, базальтовый туф, монооксид углерода, окисление, способы нанесения, палладий(II), медь(II).

T. L. Rakitskaya, T. O. Kiose, V. Ya. Volkova, O. L. Barbul Odessa I. I. Mechnikov National University, Department of Inorganic Chemistry and Chemical Ecology, Dvoryanskaya St., 2, Odessa, 65082, Ukraine; e-mail: TLR@onu.edu.ua

SUBSTANTIATION OF THE METHOD FOR OBTAINING A CATALYST BASED ON Pd(II), Cu(II), AND BASALT TUFF FOR LOW-TEMPERATURE CARBON MONOXIDE OXIDATION BY OXYGEN

Summary

The influence of methods for basalt tuff pretreatment and for component deposition on the activity of a thereby obtained catalyst for low-temperature carbon monoxide oxidation by oxygen have been studied.

Key words: catalyst, basalt tuff, carbon monoxide, oxidation, deposition, palladium(II), copper(II).