УДК 541.49: 546.814. 131 : 547.288.3

Н. В. Шматкова¹, И. И. Сейфуллина¹, О. Ю. Зинченко², И. С. Линенко¹ Одесский национальный университет имени И.И. Мечникова,

ул. Дворянская, 2, Одесса 65082, Украина.

¹химический факультет, кафедра общей химии и полимеров,

E-mail: nshmatkova@ukr.net

² биологический факультет, кафедра микробиологии, вирусологии и биотехнологии, E-mail: farmikr@mail.ru

ПРОДУКТЫ КОМПЛЕКСООБРАЗОВАНИЯ SnCl₄ С САЛИЦИЛОИЛ-(β-, γ-ПИРИДИНОИЛ)ГИДРАЗОНАМИ 2- И 4-МЕТОКСИБЕНЗОЙНЫХ АЛЬДЕГИДОВ, ИХ АНТИМИКРОБНАЯ АКТИВНОСТЬ

Синтезированы шесть комплексов SnCl₄ с салицилоил- (HL^{1,2}), β -, γ -пиридиноилгидразонами (HL³⁻⁶) 2- и 4-метоксибензальдегидов: молекулярные хелаты [SnCl₄(HL^{1,2})]·*n*CH₃CN (I, II) и цвиттер-ионные [SnCl₄(L·H³⁻⁶)] · *n*CH₃CN (III-VI). Методами ИК спектроскопии и масс-спектрометрии установлено, что в I-VI реализуется бидентатно-циклическая координация гидразонов в разных формах: кетонной $O_{(C=0)}^{--N}$ -N_(CH=N) (I, II) или енольной $O_{(C=0)}^{--N}$ -N_(CH=N) (III) или енольной $O_{(C=0)}^{--N}$ (III-VI) при наличии протонированного (HN⁺P)) пиридинового атома азота. Термолиз I–VI начинается дегидрохлорированием, которое для III–VI проходит при более высокой температуре: ~ 230 (III, V) и ~ 275 (IV, VI). Проведен первичный скрининг гидразонов и II, V, VI на проявление антимикробной активности и обнаружено 100% ингибирование комплексом II культур *E. coli, S. aureus, B. subtilis* и VI – *B. Subtilis*.

Ключевые слова: антимикробная активность, олово(IV), SnCl₄, гидразоны, координационные соединения.

В ходе систематического исследования комплексообразования тетрахлорида олова с широко применяемыми в координационной химии лигандами – гидразонами были синтезированы координационные соединения с пиридиноилгидразонами R- бензойных альдегидов (R = H, 4-N(CH₃)₂, 2-OH) [1–5]. Установлен их состав, строение, проведен сравнительный анализ влияния исходных гидразонов и соответствующих комплексов на рост условно-патогенных бактерий [2, 6]. Обнаружено, что исследованные соединения в зависимости от концентраций 25, 50 и 100 мкг/мл способны как значительно подавлять, так и стимулировать накопление биомассы грамположительных и грамотрицательных тест-штаммов, в частности они угнетают *S. aureus* и *B. subtilis* и наименее активны в отношении *E. coli*. Высокую активность проявили изоникотиноилгидразон с R = 2-OH и соответствующий комплекс (100% подавление роста). Из этого следовало, что специфику влияния на рост условно-патогенных бактерий определяют особенности состава и строения молекул исследуемых соединений, а также биологических свойств тест-шаммов.

Изученные комплексы проявляют синергизм действия биологически активных олова(IV) [7] и гидразонов [8, 9], а изменение положения азота (α-, β-, γ – NPy) в их молекулах и введение различных заместителей (R) в альдегидный фрагмент – перспективный подход для создания нового поколения антимикробных препаратов.

Материалы и методы исследования

В работе использованы SnCl₄ «осч» (ρ=2,03г/мл), гидразиды салициловой, никотиновой и изоникотиновой кислот «ч», 2-и 4-метокси-бензойные альдегиды «ч» и органические растворители «осч».

Синтез гидразонов проводили по общей методике реакцией конденсации [8] гидразидов салициловой, никотиновой и изоникотиновой кислот с эквимолярным количеством 2-метокси- и 4-метоксибензальдегидов в этаноле (схема). Полученные гидразоны промывали этанолом и сушили при 80 °С до постоянной массы. Их чистоту контролировали методом TCX на пластинках Silufol UV-254 в элюенте хлороформ : метанол = 20 : 1. Выход, % (T_{nn} , °C): HL¹ – 92 (230), HL² – 94 (245), HL³ – 98 (256), HL⁴ – 89 (249), HL⁵ – 87 (239), HL⁶ – 98 (262).

Схема

Комплексы SnCl₄ с салицилоил- [SnCl₄(HL¹)]·CH₃CN (I), [SnCl₄(HL²)] (II), никотиноил- [SnCl₄(L·H³)]·CH₃CN (III), [SnCl₄(L·H⁴)] (IV) и изоникотиноилгидразонами [SnCl₄(L·H⁵)] (V), [SnCl₄(L·H⁶)]·CH₃CN (VI) 2- и 4-метоксибензойных альдегидов были получены по методике: к насыщенным при t кип. ацетонитрильным растворам, содержащим $3 \cdot 10^{-3}$ моль гидразонов HL¹, HL⁴⁻⁶ и взвесям HL^{2,3} (в 20, 38 мл растворителя) прибавляли при непрерывном перемешивании $3 \cdot 10^{-3}$ моль SnCl₄. Полученные желтые растворы выдерживали при ~55°C до прекращения выделения из них белого дыма. При этом для I, III – VI практически сразу наблюдалось образование белого (I) и светло-желтых (III – VI) кристаллических осадков, которые после перемешивания отделяли из горячей смеси. Для выделения II – белого цвета, из соответствующего раствора отгоняли растворитель до объёма 10 мл, а затем оставляли для кристаллизации при 20 °C на 30 мин. Комплексы I – VI промывали на Shott-фильтре эфиром (I, II), ацетонитрилом (III – VI) и сушили при 80°C до постоянной массы. Результаты элементного анализа, молярной электропроводности (λ) и выход I – VI представлены в табл. 1.

			P	езультат	iəmərle iq	нтного анализа, моля	лсе йонср	вктроп	роводно	сти (у), 1	выход І	-VI	Таблица 1
		Bb	инсленс), %		Брутто		H	айдено,	%		λ, Om ⁻¹ · cm ² ·mo.ib- ¹	Выход,
Nº N	C	Н	Z	c	×	формула	C	Н	z	c	×	C,H,NO, / JIM@A	%
Ι	35,68	2,97	7,35	24,84	20,76	C ₁₅ H ₁₄ N ₂ O ₃ SnCl ₄ . CH ₃ CN	35,63	2,91	7,31	24,80	20,72	4,0 / 42-72	66
Π	33,96	2,64	5,28	26,76	22,38	$C_{15}H_{14}N_2O_3SnCl_4$	33,91	2,68	5,30	26,71	22,39	2,8 / 47-70	61
Ξ	33,05	2,94	10,28	26,07	21,79	$C_{1_3}H_{1_3}N_3O_2SnCl_4$. CH_3CN	33,09	2,87	10,34	26,14	21,74	4,1 /38	76
Ν	30,98	2,58	8,34	28,19	23,57	$C_{13}H_{13}N_3O_2SnCl_4$	31,05	2,63	8,42	28,23	23,53	3,6 / 32	85
$\mathbf{>}$	30,98	2,58	8,34	28,19	23,57	$C_{13}H_{13}N_3O_2SnCl_4$	30,91	2,51	8,40	28,12	23,61	3,6/36	80
۲ ۱	33,05	2,94	10,28	26,07	21,79	$C_{1_3}H_{1_3}N_3O_2SnCl_4$. CH_3CN	33,11	2,84	10,31	26,10	21,82	4,1 /40	83

Н. В. Шматкова, И. И. Сейфуллина, О. Ю. Зинченко, И. С. Линенко

.

В выделенных соединениях содержание хлора определяли меркурометрически [10], олова – комплексонометрическим титрованием [11], а также методом атомноэмиссионной спектроскопии с индуктивно связанной плазмой (ICP) на приборе «Optima – 2100 DV» фирмы «Perkin – Elmer», углерода, водорода и азота на CHN анализаторе Flash EA 1112.

Термогравиметрические исследования проведены на Q-дериватографе системы Паулик-Паулик-Эрдей. Образцы нагревали на воздухе от 20 до 1000°С со скоростью 10 град/мин. Навеска вещества 80 мг, держатель образца – платиновый тигель без крышки, эталон – прокаленный оксид алюминия. *Удельное сопротивление* 10⁻³М растворов I – VI измеряли в нитробензоле и ДМФА с помощью цифрового измерителя «Экономикс – эксперт», тип электролита определяли в соответствии [12]. *Масс-спектры* записывали на приборе MX-1321 с прямым вводом пробы в область ионизации при ионизирующем напряжении 70 эВ, температура источника 220°С. *ИК спектры* поглощения (4000 – 400см⁻¹) лигандов и комплексов, таблетированных с KBr, записывали на спектрофотометре Shimadzu FTIR-8400S.

В качестве тест-микроорганизмов использовали штаммы бактерий Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 и Bacillus subtilis ATCC 6633, полученные из музея культур микроорганизмов Института эпидемиологии и инфекционных болезней им. Л. В. Громашевского АМН Украины. Все штаммы являются стандартными, рекомендованными для определения антибактериальной активности новых соединений: E. coli и S. aureus – для выяснения особенностей их действия на грамотрицательные и грамположительные бактерии, а *B. subtilis* – как спорообразующий микроорганизм, обладающий повышенной устойчивостью к действию антибиотиков и дезинфектантов, который обычно включают в стандартный набор тест-культур для скрининга потенциальных антибактериальных соединений. Для определения антибактериальной активности готовили рабочие растворы, содержащие 5,0 мМ каждого вещества в 1 мл диметилсульфоксида. В опытные пробирки отбирали по 40 мкл рабочих растворов и доводили объем до 2 мл средой Гисса с глюкозой без индикатора Андреде. Таким образом, конечная концентрация соединений в среде составляля 100 мкМ. В дальнейшем готовили двукратные разведення соединений в среде Гисса, перенося 1 мл раствора из первой пробирки в следующую пробирку с 1 мл среды. Таким образом готовили ряд разведений от 100 мкМ до 25 мкМ.

Интенсивность роста тест-штаммов определяли по оптической плотности культуры, которую измеряли на спектрофотометре «Spekol-10» при длине волны 540 нм (контроль – культуры микроорганизмов, параллельно выращенные в среде Гисса, не содержащей исследованных веществ). Полная методика проведения эксперимента описана в [6].

Результаты исследования и их обсуждение

При взаимодействии SnCl₄ с салицилоил- и β -, γ -пиридиноилгидразонами 2-метоксибензойного (HL¹, HL³, HL⁵) и 4-метоксибензойного (HL², HL⁴, HL⁶) альдегидов получены комплексы одинакового состава с мольным соотношением Sn : HL : Cl = 1:1:4 (табл. 1). Они представляют собой кристаллические вещества хорошо растворимые в ДМФА, ДМСО, нитробензоле и среднерастворимые в ацетонитриле, бензоле. По результатам измерения электропроводности свежеприготовленных растворов комплексов в нитробензоле и ДМФА (табл. 1) они являются неэлектролитами [12]. В растворе ДМФА электропроводность **I**, **II** постепенно возрастает (значения их λ сначала находятся в пределах 42-47 Ом⁻¹·см²·моль⁻¹, а затем в течение 24 ч достигают значений, характерных для двухионных электролитов в соответствии с пределами $\lambda = 65-90$ Ом⁻¹·см²·моль⁻¹). В отличие от них III – VI не подвергаются сольволизу в ДМФА.

С учетом состава и поведения в разных по донорной способности растворителях комплексы можно отнести к разнолигандным, которым соответствуют формулы I - VI: [SnCl₄(HL¹)]·CH₃CN (I), [SnCl₄(HL²)] (II), [SnCl₄(L·H³)]·CH₃CN (III), [SnCl₄(L·H⁴)] (IV), [SnCl₄(L·H⁵)] (V), [SnCl₄(L·H⁶)]·CH₃CN (VI).

Сольватный состав I, III, VI определяли их изотермическим выдерживанием при t начала первого эндо-эффекта на кривых ДТА термогравиграмм (табл. 2). Убыль массы при этом ($\Delta m_{Bbdg} = \pm 0.5$ %) совпадала с Δm по TГ кривым соответствующего эффекта, а содержание хлора и олова в образовавшихся продуктах соответствовало вычисленными для несольватированных комплексов [SnCl₄(HL¹)] – 26,76(Cl), 22,37% (Sn) и [SnCl₄(L·H^{3,6})] – 27,54(Cl), 23,02% (Sn).

Таблица 2

Результаты исследования	термической	устойчивости	I –	VI
-------------------------	-------------	--------------	-----	----

Nº	Комплекс	Температурный интервал ∆T (t _{max} ,°C)↑↓	Δm (TΓ), %	$\Delta m_{reop}, \frac{9}{6}$	SnO _{2reop,}	SnO _{2практ,}
Ι	[SnCl ₄ (HL ¹)]·CH ₃ CN	$ \begin{array}{c} 120-180(150\downarrow) \\ 210-280(230\downarrow) \\ 280-330(320\downarrow) \\ 340-650(550\uparrow) \end{array} $	7,5 11,4 21,4 42,8	7,2 (-CH ₃ CN)	26,4	24,4
п	[SnCl ₄ (HL ²)]	215-290(235↓) 310-330(315↓) 330-660(570↑)	13 20,3 40,6		28,4	26,1
ш	[SnCl ₄ (L·H ³)]·CH ₃ CN	150-220(200↓) 230-295(260↓,290↓) 320-395(380↓,400↑) 395-685(520↑,620↑)	7,9 7,9 32,1 33,6	7,4 (-CH ₃ CN) 7,1 (-HCI)	29,2	18,5
IV	[SnCl ₄ (L·H ⁴)]	275-350(320↓) 370-400(380↓,400↑) 400-675(620↑)	6,8 37,1 35,7	7,1(-HCl)	27,5	21,5
v	$[\mathrm{SnCl}_4(\mathrm{L}{\cdot}\mathrm{H}^5)]$	220-320(270↓) 340-470(410↓,440↑) 470-790(580↑,780↓)	17,1 40,0 28,6		29,2	14,3
VI	[SnCl ₄ (L·H ⁶)]·CH ₃ CN	100-210(190↓) 280-330(310↓) 370-480(410↓,450↑) 480-900(600↑)	7,3 7,1 38,6 29,5	7,4 (-CH ₃ CN) 7,1 (-HCl)	27,5	19,1

Интерпретация данных ТГ-, ДТГ анализа и кривых ДТА комплексов показала, что несмотря на их одинаковый состав, характер термолиза I, II и III – VI имеет ряд отличий. В качестве примера на рис. 1, 2 приведены термогравиграммы I, III, V, VI. Термораспад I (десольватированного) и II начинается при 210-215°С и проходит в три стадии без образования термически устойчивых фаз (табл. 2, рис. 1а). Первая сопровождается эндо-эффектом с убылью массы по ТГ 11-13 % и обусловлена, вероятно, дегидрохлорированием, что характерно для хлорсодержащих комплексов олова (IV) [3-5, 13]. На второй наблюдается эндо-эффект, переходящий в экзо-, с более значительной Δm по ТГ (22-23%), что свидетельствует о дальнейшей деструкции, которая завершается на третьей стадии с Δm вплоть до 42 % и сопровождается интенсивным экзо-эффектом окисления органической части молекулы с образованием SnO₂ – продукта, характерного для комплексов олова [3-5, 13].

Рис.1. Термогравиграммы комплексов: а – (I), б – (III)

Термолиз III – VI также протекает в три стадии, но в отличие от I, II начинается при более высокой температуре (табл. 2): комплексы с пиридиноилгидразонами 4-метоксибензальдегида (IV, VI) характеризуются более высокой термической устойчивостью (рис. 26) по сравнению с III (рис. 16), V (рис. 2а). Наличие на термогравиграммах III, IV, VI после первого эффекта термически стабильного участка позволило провести их изотермическое выдерживание при 230°С (III), 280°С (IV, VI). Анализ образовавшихся продуктов подтвердил равенство $\Delta m_{вмл} \approx$

 $\Delta m(T\Gamma) \approx \Delta m_{_{TeOP}}(-HCl)$, согласующееся с удалением 1 моль хлороводорода (найдено Cl(Sn), %: 22,12 (24,67) – III; 22,25 (24,74) – IV; 22,20 (24,76) – VI; вычислено Cl(Sn): 22,22 (24,77) для [SnCl₃(L^{3,4,6})]. Для комплекса V (рис. 2а) этот эффект связан с удалением большего количества HCl, на что указывает более значительная убыль массы 17%.

Рис. 2. Термогравиграммы комплексов: a – (V), б – (VI)

Вторая и третья стадии термолиза комплексов III – VI практически подобны описанным выше для I, II. При этом обращает на себя внимание тот факт, что масса остатка по ТГ для III – VI меньше теоретически рассчитанной для SnO₂ (табл. 2), что объясняется удалением во время термолиза летучих оловосодержащих частиц – процесса характерного для оловохлорсодержащих комплексов Sn(IV) [13].

Следует отметить, что в масс-спектрах комплексов **I**, **II** присутствуют пики ионов с m/z 36[HCl]⁺, 225[SnCl₃]⁺ и гидразона 270[HL^{1,2}]⁺, а в **III** – VI – 36[HCl]⁺ и 480 [¹²⁰SnCl₃(L³⁻⁶)]⁺ с наибольшей интенсивностью пика олова ¹²⁰Sn. Такое различие в масс-спектрах **I**, **II** и **III** – VI косвенно свидетельствует о различном способе связывания гидразонов в этих комплексах.

Способ координации лигандов в I - VI доказывали методом ИК спектроскопии сравнением соответствующих спектров гидразонов и комплексов с использованием [1, 3-5, 14-16]. При этом основное внимание было уделено частотам колебаний основных функциональных групп, способных участвовать в координации. Обращает на себя тот факт, что изменения в спектрах I, II и III – VI отличаются (табл. 3).

Комплексы SnCl	!, с салицилоил-(β-,	ү-пиридиноил))гидразонами	альдегидов
----------------	----------------------	---------------	--------------	------------

T ~	2
Гаолина	
таолица	2

		, ,		<u> </u>	- u	1	1	1	
№	v(NH)	v(CH) кольца	v _s (CH ₃) (Ar-O-CH ₃)	v (C=O)	v (C=N)	$\frac{\underline{\delta(CH}_{\text{кольца}})}{\delta^*(Py_{\text{кольца}})}$	δ(NH)+ v(C-N)	$\frac{v_{as}(CH_3)}{v_s(CH_3)}$	v _{as} (C _{Ar} -O-C)
HL^{1}	3250	3060	2950 2929 2830	1642	1627	1605 1510	1550	$\frac{1450}{1370}$	1250
Ι	3120	3058	2951 2930 2835	1630	1610	1598	1555 1530	$\frac{1460}{1374}$	1252
HL ²	3257	3061	2951 2929 2835	1640	1627	1607 1513	1552	<u>1455</u> 1376	1255
Π	3116	3058	2951 2844	1630	1615	1597	1560 1540	$\frac{1464}{1374}$	1250
HL ³	3192	3066 3030	2937 2838	1650	1630	1600 1005*	1565	$ \begin{array}{r} 1480 \\ \underline{1464} \\ 1364 \end{array} $	1251
III	-	3068 3020	2936 2839	-	1610	1590 1517 1011*	1540	1476 <u>1462</u> 1370	1246
HL ⁴	3200	3060 3030	2941 2840	1654	1630	1600 1002*	1560c	$\frac{1474}{1370}$	1260
IV	-	3042 3030	2929 2835	-	1615	1597 1580 1025*	1545	<u>1472</u> 1363	1252
HL ⁵	3210	3060 3023	2940 2845	1650	1625	1600 1510 998*	1564	1480 <u>1468</u> 1370	1250
v	-	3059 3030	2935 2837	-	1608	1592 1511 1007*	1540	1478 <u>1464</u> 1367	1247
HL ⁶	3203 3155	3037	2874 2845	1656	1625	1597 1513 1003*	1550	<u>1477</u> 1371	1255
VI	-	3092 3030	2929 2835	-	1610	1587 1511 1017*	1540	$\frac{1480}{1362}$	1260

Ланные ИК спектров гилразонов и комплексов I – VI

Так, в спектрах салицилоилгидразонов в области 1656-1605 см⁻¹ наблюдаются три полосы поглощения, которые можно идентифицировать как v(C=O), v(C=N) и σ (CH_{кольца}). В спектрах соответствующих комплексов **I**, **II** первые две смещаются в низкочастотную область на 10-17 см⁻¹, при этом полосы, ответственные за колебания v(NH) претерпевают аналогичное смещение, но более значительное по величине (на 130-140 см⁻¹). Эти изменения, с учётом появления в спектрах полос, ответственных за колебания v(Sn–O) 584 (I), 572 (II) и v(Sn–N) 470 (I), 479 (II) [3-5, 16], указывают на сохранение в I, II кетонной формы лиганда и вовлечение атомов кислорода карбонильной группы и азота азометиновой в координацию с оловом.

Следует отметить, что интенсивная полоса совместных колебаний $[\delta(NH)+v(C-N)]$ в спектрах гидразонов $HL^{1,2}$ при ~ 1550 см⁻¹ в ИК спектрах I, II

расщепляется на две при 1555-1560 и 1530-1540 см⁻¹ (табл. 3), что может быть объяснено изменением частот колебаний групп центрального фрагмента молекулы лиганда, ответственных за образование пятичленного металлоцикла. Обращает на себя внимание тот факт, что полосы v(OH), ответственные за колебания OH-группы, наблюдающиеся в спектрах HL^{1,2} при 3400-3390 см⁻¹ в виде широкой мало интенсивной полосы, в спектрах **I**, **II** сохраняются, из чего следует, что она не участвует в координации с оловом [15].

С учётом того, что атом кислорода альдегидной 2-OCH₃ группы может связываться с оловом, было обращено внимание на частоты $v_s(CH_3)$ фрагмента (Ar-O-CH₃), $v_{as}(CH_3)/v_s(CH_3)$, а также $v_{as}(C_{Ar}$ -O-C) [14]. Их сравнение в ИК спектрах гидразонов и комплексов **I** – **VI** (табл. 3) показало, что наблюдаемые независимо от положения метокси-группы однотипные незначительные изменения в **I** – **VI** не связаны с координацией. Таким образом, данные ИК спектров **I**, **II** свидетельствуют о бидентатной O_(C=O)–N_(CH=N) координации амидной формы лиганда и реализации в них координационного узла {SnCl₄ON}:

В отличие от I, II в спектрах комплексов III – VI в области 1660-1600см⁻¹ высокочастотная полоса v(C=O) отсутствует и наблюдается низкочастотное смещение v(C=N). Из этого можно заключить, что в III – VI реализуется енольная форма гидразонов с координацией через атом кислорода оксиазиновой группы и замыканием цикла через азометиновый атом азота. Это согласуется с появлением новых частот v(Sn–O) 577-580 см⁻¹ и v(Sn–N) 474-480 см⁻¹. Расщепление полосы колебаний [δ (NH) + v(C–N)], характерное для спектров I, II, в спектрах III – VI не происходит: наблюдается ее низкочастотное смещение (на 10-25см⁻¹) и значительное понижение её интенсивности по сравнению с гидразонами. Это также указывает на отличие в таутомерных формах лигандов III – VI по сравнению с I, II.

С учётом данного способа связывания, результатов элементного анализа и кондуктометрии на координационном узле {SnCI₄ON} в III – VI возникает отрицательный заряд, компенсация которого возможна только за счёт протонирования пиридинового атома азота гидразидного фрагмента:

Указанное коррелирует с высокочастотным смещением на 10-12 см⁻¹ δ (NPy) в области 1000-1017 см⁻¹ в ИК спектрах **III** – **VI** по сравнению с гидразонами, что ранее обнаружено в спектрах структурно охарактеризованных цвиттер-ионных комплексов с изоникотиноилгидразонами R- бензойных альдегидов (R=4-N(CH₃)₂, 2-OH) [4, 5].

Проведено исследование антибактериальной активности салицилоилгидразона 4-OCH₃-бензальдегида (HL²), изоникотиноилгидразонов 2-OCH₃- и 4-OCH₃бензойных альдегидов (HL^{5,6}) и соответствующих комплексов **II**, **V**, **VI** на примере стандартных штаммов *E. coli*, *S. aureus* и *B. subtilis*. Определение влияния салицилоилгидразона (HL²) на рост грамотрицательного *E. coli* показало, что в его присутствии при всех концентрациях накопление биомассы тест-штамма шло более активно (130%), чем в контроле (100%) (рис. 3а).

Рис. 3. Влияние на рост тест-микроорганизмов: $a - HL^2$, $\delta - [SnCl_4(HL^2)]$ (II).

Такой же стимулирующий эффект (вплоть до 140%) наблюдали при добавлении к среде изоникотиноилгидразона (HL⁶). Гидразон (HL⁵), в отличие от них, вызывал задержку накопления биомассы на 9,5 и 20,8% при концентрации в среде 50 и 100 мкМ соответственно. Противоположная картина наблюдалась в случае грамположительных тест-штаммов. Так, при добавлении к среде HL² рост *S. aureus* подавлялся на 21,2-48,4% (максимально при 100 мкМ), а *B. subtilis* на 35,1 до 42,2% (максимальное при 100 мкМ). Следует отметить, что в обоих случаях зависимость ингибирующего эффекта от концентрации не была линейной (рис. 3а). Изоникотиноилгидразон HL⁵ неоднозначно влиял на культуру *S. aureus*: при концентрации 25 мкМ наблюдалось незначительное стимулирование роста (10%), при 50 и 100 мкМ – ингибирующий эффект на уровне 17,7% и 39,2%. Ингибирование роста *B. subtilis* составило от 23,9 до 50,8%. Наименее активным среди гидразонов оказался гидразон HL⁶: его максимальный угнетающий эффект по отношению в культурам грамположительных микроорганизмов был практически одинаковым и составлял ~33% при его максимальной концентрации в среде.

Исследование влияния соответствующих комплексов **II**, **V**, **VI** на рост тестмикроорганизмов в большинстве случаев выявило увеличение ингибирующей активности по сравнению с гидразонами, что можно расценивать только как результат их координации к SnCI₄ и синергизма действия комплексообразователя и лиганда в составе образующихся комплексов.

Так, накопление биомассы *E. coli* в присутствии $[SnCl_4(HL^2)]$ (II) в зависимости от концентрации подавлялось на 17,0-100,0%, максимальный эффект наблюдался при 50 мкМ (рис. 36). В случае *S. aureus* полное угнетение было зарегистрировано при концентрации 50 и 100 мкм соединения II, в культуре *B. subtilis* – только при 50 мкМ (рис. 36).

В отличие от него комплекс $[SnCl_4(L·H^5)]$ (V) оказался более активным, чем соответствующий гидразон HL⁵ только по отношению к штамму *B. subtilis* – антимикробный эффект возрос до 63,2% уже при минимальной концентрации. В культурах *S. aureus* и *E. coli* достоверного увеличения активности не наблюдалось. Комплекс $[SnCl_4(L·H^6)]$ ·CH₃CN (VI) в концентрации 25 мкМ проявил незначительную ингибирующую активность (11,9%) в отношении *E. coli* в отличие от стимулирующего эффекта гидразона при данной концентрации. В случае *S. aureus* отличий в ингибирующем действии комплекса и гидразона не наблюдалось. Следует отметить, что угнетение роста *B. subtilis* составляло 90% при минимальной концентрации VI, что значительно выше соответствующего гидразона.

Наиболее активным среди исследуемых комплексов оказался $[SnCl_4(HL^2)]$ (II), который вызвал полную остановку роста всех тест-штаммов при 50 мкМ. Ответ на вопрос, почему именно он проявил максимальную противомикробную активность, был получен в результате сравнения его состава и строения с V, VI. Комплекс II – молекулярный хелат, а V и VI – цвиттерионные; в составе II, V, VI одинаковый альдегидный фрагмент, но разные гидразидные (салицилоил – II), изоникотино-ил – V, VI); отличаются и координированные формы гидразонов: кетонная – II и енольная – V, VI. Таким образом, было установлено, что на проявляемую антими-кробную активность рассматриваемых комплексов оказывает влияние сочетание всех указанных выше различных факторов.

ЛИТЕРАТУРА

1. Шматкова Н.В., Сейфуллина И.И., Дивакова А.И., Мазепа А.В. Темплатная конденсация в системах типа «гидразиды – SnCl₄ – альдегиды – CH₃CN» // Вісник ОНУ. Хімія. – 2012. – Т. 17, № 1. – С. 5-12.

Комплексы SnCl₄ с салицилоил-(β-, γ-пиридиноил)гидразонами альдегидов

- Шматкова Н.В., Сейфуллина И.И., Зинченко О.Ю. Синтез, строение и противомикробная активность хелатов SnCl₄ с пиридиноилгидразонами ароматических альдегидов // Укр. хим. журнал. – 2013. – Т. 79, № 3 – С. 33-39.
- Shmatkova N.V., Seifullina I.I., Starikova Z.A. Tin(IV) complexes with 2-hydroxybenz(2-hydroxynaphth)aldehyde nicotinoylhydrazones (H₂Ns, H₂Nnf). Molecular and crystal structures of [SnCl₃(HNnf)]²DMF // Rus. J. Coord. Chem. – 2015. – Vol. 41, N 5. – P. 293-299. http://dx.doi.org//10.7868/S0132344X15050072
- Seifullina I.I., Shmatkova N.V., Shishkin O.V., Zubatyuk R.I. Tin(IV) complexes with 2-hydroxybenz-(2-hydroxynaphth)aldehyde picolinoylhydrazones (H,Ps, H,Pnf). Crystal structure of [SnCl₃(Ps · H)]·CH₃OH and [SnCl₃(Pnf · H)]·CH₃OH // Russ. J. Inorg. Chem. 2007. Vol. 58, N 1. P. 26-32. http://dx.doi.org// 10.1134/S0036023613010154
- Shmatkova N.V., Seifullina I.I., Arkhipov D.E., Korlyukov A.A. Tin tetrachloride chelates with 4-dimethylaminobenzaldehyde pyridinoylhydrazones. Molecular and crystal structures of [SnCl₄(γ-Idb · H)]·CH₃CN and [SnCl₄(γ-Idb · H)]·DMF // Rus. J. Coord. Chem. – 2015. – Vol. 41, N 8. – P. 503-508. http://dx.doi. org//10.7868/S0132344X15080058
- Зинченко О.Ю. Шматкова Н.В., Сейфуллина И.И., Галкин Б.Н., Филлипова Т.О. Антимикробная активность производных изоникотиновой кислоты и комплексов олова(IV) на их основе // Микробиология и биотехнология. – 2013. – № 2. – С. 69-78.
- Prasad K.S., Kumar L. Shiva, Prasad Melvin, Hosakere D. Revanasiddappa. Novel Organotin(IV) Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Activity, and DNA Interaction Studies // Bioinorg. Chem. Appl. – 2010. – Article ID 854514. http://dx.doi.org/10.1155/2010/854514
- Jadon G., Kumawat L. Synthesis, spectral and biological evaluation of some hydrazone Derivatives // IJPSR. 2011. – Vol. 2, N 9. – P. 2408-2412.
- Rollas S., Küçükgüzel Güniz S. Biological Activities of Hydrazone Derivatives // Molecules. 2007. N 12. P. 1910-1939. http://dx.doi.org/10.3390/12081910
- 10. Ключников Н.Г. Руководство по неорганическому синтезу. М.: Химия, 1965. 104 с.
- 11. Спиваковский В.Б. Аналитическая химия олова. М.: Наука, 1975. 245 с.
- Geary W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds // Coord. Chem. Rev. - 1971. - N 7. - P. 81-122. http://dx.doi.org/10.1016/S0010-8545(00)80009-0
- 13. Sedaghat T., Monajjemzadeh M. Some New Organotin(IV) Schiff Base Adducts:Synthesis, Spectroscopic Characterization and Thermal Studies // J. Iran. Chem. Soc. 2011. Vol. 8, N 2. P. 477-483.
- 14. Наканиси К. Инфракрасные спектры и строение органических соединений. М.: Мир, 1965. 216 с.
- Shmatkova N.V., Seifullina I.I., Korlyukov A.A. Complexation of SnCl₄ with benzaldehyde 2-R-benzoyl-(R-HBb) and 3-R-2-naphthoylhydrazones (R = H, OH): The structure of [SnCl₄(2-OH-HBb)]·CH₃CN // Rus. J. Inorg. Chem. 2015. Vol. 60, N 9. P. 1068-1073. http://dx.doi.org/10.7868/S0044457X15090160
- Min Hong, Han-Dong Yin, Shao-Wen Chen, Da-Qi Wang. Synthesis and structural characterization of organotin(IV) compounds derived from the self-assembly of hydrazone Schiff base series and various alkyltin salts // J. Organomet. Chem. – 2010. – Vol. 695, N 5. – P. 653-662. http://dx.doi.org// 10.1016/j.jorganchem.2009.11.035

Стаття надійшла до редакції 12.01.16

Н. В. Шматкова¹, І. Й. Сейфулліна¹, О. Ю. Зінченко², І. С. Ліненко¹

Одеський національний університет імені І.І. Мечникова, вул. Дворянська, 2, Одеса 65082, Україна.

¹хімічний факультет, кафедра загальної хімії та полімерів,

E-mail: nshmatkova@ukr.net

² біологічний факультет, кафедра мікробіології, вірусології та біотехнології, E-mail: farmikr@mail.ru

ПРОДУКТИ КОМПЛЕКСОУТВОРЕННЯ SnCl₄ З САЛІЦИЛОЇЛ-(β-, γ-ПІРИДИНОЇЛ)ГІДРАЗОНІВ 2- ТА 4-МЕТОКСИБЕНЗОЙНИХ АЛЬДЕГІДІВ, ЇХ ПРОТИМІКРОБНА АКТИВНІСТЬ

Синтезовано шість комплексів SnCl₄ з саліцилоїл-(HL^{1,2}), β -, γ - піридиноїлгідразонами (HL³⁻⁶) 2- та 4-метоксибензальдегідів: молекулярні хелати [SnCl₄(HL^{1,2})]·*n*CH₃CN (I, II) і цвіттер-іонні [SnCl₄(L·H³⁻⁶)] · *n*CH₃CN (III–VI). Методами IЧ спектроскопії та мас-

спектрометрії встановлено, що в I–VI реалізується бідентатно-циклічна координація гідразонів в різних формах: кетонної $O_{(C=0)}$ – $N_{(CH=N)}$ (I, II) або єнольної $O_{(C-0)}$ – $N_{(CH=N)}$ (III–VI) при наявності протонованого (HN⁺Py) придинового атома нітрогену. Термоліз I–VI починається дегідрохлоруванням, яке для III–VI відбувається при більш високій температурі: ~ 230 (III, V) і 275 (IV, VI). Проведено первинний скринінг гідразонів і II, V, VI на прояв антимікробної активності і виявлено високе інгібування комплексом II культур *E. coli*, *S. aureus*, *B. subtilis* i VI – *B. Subtilis*.

Ключові слова: антимікробна активність, станум (IV), SnCl₄, гідразони, координаційні сполуки

N. V. Shmatkova¹, I. I. Seifullina¹, O. Yu. Zinchenko², I. S. Linenko¹

I.I. Mechnikov Odessa National University, Dvoryanskaya St., 2, Odessa, 65082, Ukraine ¹faculty of chemistry, department of general chemistry and polymers, E -mail: nshmatkova @ ukr.net

²faculty of biology, department of microbiology, virology and biotechnology, E-mail: farmikr@mail.ru

PRODUCTS OF COMPLEXATION OF SnCl₄ WITH SALICYLOYL-(β-, γ-PYRIDINOYL)HYDRAZONES OF 2- AND 4-METHOXYALDEHYDES, THEIR ANTIMICROBIAL ACTIVITY

Complexes of different types: molecular chelates $[SnCl_4(HL^{1,2})]$ ·nCH₃CN (I, II) and zwitterionic $[SnCl_4(L\cdot H^{3-6})] \cdot nCH_3CN$ (III-VI) – were synthesized by interaction of $SnCl_4$ with salicyloyl-(HL^{1,2}), β -, γ - pyridinoyl)hydrazones (HL³⁻⁶) of 2- and 4-methoxyaldehydes. Complexes I, II, unlike III-VI, are subjected to solvolysis in DMF by the reaction: $[SnCl_4(HL^{1,2})]$ ·+ $\mathcal{A}[M\PhiA \rightarrow [SnCl_3(HL^{1,2})(\mathcal{A}[M\PhiA)]$ ·+ Cl⁻. The mass spectra of I, II contains peaks of ions with m/z 36[HCI]⁺, 225[SnCl_3]⁺ and hydrazone 270[HL^{1,2}]⁺, spectra of III-VI – 36[HCI]⁺ and 480[¹²⁰SnCl_3(L³⁻⁶)]⁺. In the IR spectra of I, II bands v(C=O), v(NH) are displaced to lower frequencies as compared to hydrazones; in the spectra of III-VI they are absent; in I–VI appear new v(Sn–O) and v(Sn–N), retained frequency $v_{as}(CH_3)/v_s(CH_3)$, $v_{as}(C_{Ar}$ -O-C) and v(OH) (I, II). This indicated, that in –VI realized bidentate coordination of hydrazones in different forms: ketone $O_{(C=0)}$ –N_(CH=N) (I, II) or enol $O_{(C-0)}$ –N_(CH=N) (III–VI) in the presence of a protonated (HN⁺Py) pyridime nitrogen atom. Thermolysis of I–VI begins by dehydrochlorination, which for III–VI occurs at a higher temperature: 230(III, V) and 275 (IV, VI) with formation of the final product SnO₂. A primary screening of hydrazones and II, V, VI on the manifestation of antimicrobial activity was conducted, it is shown that depending on the concentrations of 25, 50 and 100 mcg/ml they able to significantly inhibit or induce the accumulation of biomass strains of *E. coli*, *S. aureus*, *B. subtilis*. It was found 100% inhibition complex II of all cultures and VI – only *B. subtilis*.

Keywords: antimicrobial activity, tin (IV), SnCl₄, hydrazones, coordination compounds.

References

- Shmatkova N.V, Sejfullina I.I., Divakova A.I., Mazepa A.V. Templatnaya kondensatsiya v sistemah tipa «gidrazidyii – SnCl₄ – aldehyde CH₃CN». Visn. Odes. nac. univ., Him., 2012, vol. 17, no. 41, pp.5-12. (in Russian)
- Shmatkova N.V., Sejfullina I.I., Zinchenko O.YU. Cintez, stroenie i protivomikrobnaya aktivnost' helatov SnCl₄ s piridinoilgidrazonami aromaticheskih al'degidov. Ukr. Him. Zhurnal, 2013, vol. 79, no. 3, pp. 33-39. (in Russian)
- Shmatkova N.V., Seifullina I.I., Starikova Z.A. *Tin(IV) complexes with 2-hydroxybenz(2-hydroxynaphth)alde-hyde nicotinoylhydrazones (H₂Ns, H₂Nnf). Molecular and crystal structures of [SnCl₃(HNnf)] 2DMF. Russ. J. Coord. Chem., 2015, vol. 41, no. 5, pp. 293-299. http://dx.doi.org/10.7868/S0132344X15050072*

Комплексы SnCl₄ с салицилоил-(β-, γ-пиридиноил)гидразонами альдегидов

- Seifullina I.I., Shmatkova N.V., Shishkin O.V., Zubatyuk R.I. *Tin(IV) complexes with 2-hydroxybenz-(2-hy-droxynaphth)aldehyde picolinoylhydrazones (H₂Ps, H₂Pnf). Crystal structure of [SnCl₃(Ps · H)] · CH₃OH and [SnCl₃(Pnf · H)] · CH₃OH. Russ. J. Inorg. Chem., 2007, vol. 58, no 1, pp. 26-32. http://dx.doi.org// 10.1134/S0036023613010154*
- Shmatkova N.V., Seifullina I.I., Arkhipov D.E., Korlyukov A.A. Tin tetrachloride chelates with 4-dimethylaminobenzaldehyde pyridinoylhydrazones. Molecular and crystal structures of [SnCl₄(y-Idb · H)] · CH₃CN and [SnCl₄(y-Idb · H)] · DMF. Russ. J. Coord. Chem., 2015, vol. 41, no. 8, pp. 503-508. http://dx.doi.org/10.7868/ S0132344X15080058
- Zinchenko O.Yu., Shmatkova N.V., Sejifullina I.I., Galkin B.N., Fillipova T. O. Antimikrobnaya aktivnost' proizvodnyh izonikotinovoj kisloty i kompleksov olova(IV) na ih osnove. Mikrobiologiya i biotekhnologiya, 2013, no. 2, pp. 69-78.
- Prasad K.S., Kumar L. Shiva, Prasad Melvin, Hosakere D. Revanasiddappa. Novel Organotin(IV) Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Activity, and DNA. Bioinorg. Chem. Appl., 2010, Article ID 854514. http://dx.doi.org/10.1155/2010/854514
- 8. Jadon G., Kumawat L. *Synthesis, spectral and biological evaluation of some hydrazine Derivatives*. IJPSR, 2011, vol 2, no. 9, pp. 2408-2412.
- Rollas S. Küçükgüzel S. G. Biological Activities of Hydrazone Derivatives. Molecules, 2007, no. 12, pp. 1910-1939. http://dx.doi.org/10.3390/12081910
- 10. Kliychnikov N.G. Rukovodstvo po neorganicheskomu sintezu. Moscow: Himiya, 1965. 104 p. (in Russian)
- 11. Spivakovskiji V.B. Analiticheskaya himiya olova. Moscow: Nauka, 1975. 245 p. (in Russian)
- 12. Geary W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev, 1971, no. 7, pp. 81-122. 10.1016/S0010-8545(00)80009-0
- 13. Sedaghat T., Monajjemzadeh M. Some New Organotin(IV) Schiff Base Adducts:Synthesis, Spectroscopic Characterization and Thermal Studies. J. Iran. Chem. Soc, 2011, vol. 8, no. 2, pp. 477-483.
- 14. Nakanisi K. Infrakrasnyiie spektry i stroenie organicheskih soedineniji. Moscow: Mir, 1965. 216 p. (in Russian)
- Shmatkova N.V., Seifullina I.I., Korlyukov A.A. Complexation of SnCl₄ with benzaldehyde 2-R-benzoyl-(R-HBb) and 3-R-2-naphthoylhydrazones (R = H, OH): The structure of [SnCl₄(2-OH-HBb)] · CH₃CN. Russ. J. Inorg. Chem., 2015, vol. 60, no 9, pp. 1068-1073. http://dx.doi.org/10.7868/S0044457X15090160
- Min Hong. Han-Dong Yin, Shao-Wen Chen, Da-Qi Wang. Synthesis and structural characterization of organotin(IV) compounds derived from the self-assembly of hydrazone Schiff base series and various alkyltin salts. J. Organomet. Chem, 2010, vol. 695, no. 5, pp. 653-662. http://dx.doi.org// 10.1016/j.jorganchem.2009.11.035