УДК 546.224-31:547.262-304.2

Р. Е. Хома^{1, 2}, А. А. Шестака¹, В. О. Гельмбольдт^{1, 3}

- ¹ Физико-химический институт защиты окружающей среды и человека Министерства образования и науки Украины и НАН Украины, ул. Преображенская, 3, Одесса, 65082, Украина; email: eksvar@ukr.net
- ² Одесский национальный университет имени И. И. Мечникова, ул. Дворянская, 2, Одесса, 65082, Украина;
- email: rek@onu.edu.ua
- ³ Одесский национальный медицинский университет, пер. Валиховский, 2, Одесса, 65082, Украина

ВЗАИМОДЕЙСТВИЕ ОКСИДА СЕРЫ(IV) С ВОДНЫМИ РАСТВОРАМИ МОНОЭТАНОЛАМИНА

Показано, что ход кривых pH-метрического титрования водных растворов моноэтаноламина (МЭА) газообразным SO₂ имеет аналогичный характер. Предложена схема процессов, реализующихся в реакционной системе SO₂ — МЭА — H₂O. Хемосорбция завершается при мольном соотношении SO₂:МЭА = n:m ($n = 1, 1 \div 1, 2$; m = 1, 0) и pH 2,10 $\div 2, 40$.

Ключевые слова: оксид серы (IV), моноэтаноламин, водные растворы, «ониевые» сульфиты.

Оксид серы(IV) — один из основных загрязнителей атмосферы преимущественно техногенного происхождения [1] и поэтому разработка эффективных методов улавливания этого токсиканта (II класса опасности, $\Pi \Box K = 10 \text{ мг} \cdot \text{м}^{-3}$) является актуальной задачей. Для извлечения SO₂ из технологических газов широко используются абсорбционные методы [2], в частности, с применением растворов органических оснований. В их числе в последние годы активно изучаются этаноламины, а также их солевые формы [3], для которых имеется опыт практического использования в процессах очистки промышленных отходящих газов от оксида углерода(IV), сероводорода и карбонилсульфида [2].

Цель настоящей работы — изучение взаимодействия оксида серы(IV) с водными растворами моноэтаноамина (MЭA, NH₂CH₂CH₂OH, Am) методом pH-метрического титрования, причем для выявления возможных корреляций «концентрация MЭA — характеристики абсорбционной системы» в данной работе использован концентрационный диапазон органического основания (MЭA) 0,050÷0,20 М. Ранее [4, 5] система SO₂ — NH₂CH₂CH₂OH — H₂O была изучена при концентрации МЭА, равной 0,10 М.

Методика проведения эксперимента детально описана в [6, 7]. На рис. 1 представлены данные рН-метрического титрования водных 0,050÷0,20 М растворов МЭА газообразным оксидом серы(IV) при 293 К.

Согласно полученным данным (рис. 1, табл. 1) во всех исследованных системах первый скачок титрования лежит в области pH 9,40 \div 6,80, а второй — 6,65 \div 2,10. Вначале при поглощении SO₂ растворами МЭА происходит образование сульфитов (уравнения 1—3; pH \ge 11,0), которые преобразуются в гидросульфиты (уравнения 4, 5; первый скачок титрования). Последний процесс завершается при pH 6,65 \div 6,80. В точке середины первого скачка титрования (pH 7,80 \div 8,20) начинается процесс (6).

ļ
В
Ц
И
Г
0
В
Ē

A 1a30-	
еw	
растворов	
водных	
титрования	
кривых	(IV)
рН-метрических	ым оксидом серы
и дифференциальных	образнь
интегральных и	
Характеристики	

<u> </u>		I	[максимум					П максимум		
моль/л	SO2:MƏA	Hq	$\Delta p H_{1/2}^{*}$	dpH/dpQ_{SO_2}	$S_{1/2}^{**}$	SO ₂ :MЭA	Hd	$\Delta p H_{1/2} \ ^{\ast}$	$dpH/dpQ_{\rm SO_2}$	S _{1/2} **
0,050	1,0:1,4	$9,60\div6,75$	1,10	30,5	0,093	1,0:1,0	$6,75 \div 2,35$	2,00	147,6	0,291
0,075	1,0:1,9	$9,50\div6,80$	1,40	26,5	0,160	0,9:1,0	$6,80\div2,40$	1,40	147,6	0,345
0,10	1,0:2,0	$9,60\div6,80$	1,20	22,8	0,180	0,9:1,0	$6,80 \div 2,20$	1,05	112,4	0,400
0,15	1,0:2,0	$9,40$ \div $6,80$	1,20	22,4	0,236	0,9:1,0	$6,80 \div 2,35$	1,15	98,5	0,480
0,20	1,0:2,0	$9,60 \div 6,65$	1,20	29,8	0,370	0,9:1,0	6,65 + 2,10	1,80	86,0	1,028
* \$\Delta PH_{1/2}\$	- Bbicota	скачка на ин	нтегрально	й кривой рГ	І-метричес	кого титрое	зания, наход	ящегося ме	эжду точкой	середины

Взаимодействие SO2 с водными растворами моноэтаноламина

скачка титрования и его концом; ** S_{1/2} — площадь поверхности под участком дифференциальной кривой, лежащим между точками соответствующего мак-симума и последующего минимума

сни 27 $SO_2 + H_2O + 2Am \rightleftharpoons SO_3^{2-} + 2AmH^+;$ (1)

- $SO_2 + H_2O + 2Am \rightleftharpoons (AmH)_2SO_3;$ (2)
- $SO_2 + OH^- + Am \rightleftharpoons SO_3^{2-} + AmH^+;$ (3)
- $SO_2 + H_2O + SO_3^{2-} \rightleftharpoons 2HSO_3^{-}; \tag{4}$
- $SO_2 + (AmH)_2SO_3 \rightleftharpoons 2(AmH)HSO_3;$ (5) $SO_2 + OH^- \Rightarrow HSO^-$ (6)

$$SO_2 + OH^- \rightleftharpoons HSO_3^-.$$
 (6)

Дальнейшее добавление SO₂ приводит к переходу гидросульфитных соединений в пиросульфитные (уравнения 7, 8), а процессы (1—3) прекращаются [5]. Поскольку при этом pH < 7,0, то начинается реакция (9) и происходит связывание свободного МЭА в гидросульфитный комплекс (уравнение 10).

$$SO_2 + HSO_3^- \rightleftharpoons S_2O_5^{2-};$$
 (7)

$$2(\text{AmH})\text{HSO}_3 \rightleftharpoons (\text{AmH})2\text{S}_2\text{O}_5 + \text{H}_2\text{O}; \tag{8}$$

$$SO_2 + H_2O \rightleftharpoons HSO_3^- + H^+;$$
 (9)

$$SO_2 + H_2O + Am \rightleftharpoons (AmH)HSO_3.$$
 (10)

Рис. 1. рН-метрические кривые титрования водных растворов МЭА газообразным SO₂ при 293 К. С $^0_{M \supseteq A}$ (моль/л): 1 - 0,050; 2 - 0,075; 3 - 0,10 [4]; 4 - 0,15; 5 - 0,20

В точке середины второго скачка титрования (pH 3,25÷4,35) МЭА прекращает вести себя в качестве бренстедовского основания (SO₂:MЭА = = 0,9÷1,0:1,0). Последующее понижение pH обусловлено только процессом (9). В точке конца второго скачка титрования при pH 2,10÷2,40 и SO₂: MЭА = 1,1÷1,2:1,0 завершается процесс (10). Дальнейшее связывание SO₂ обусловлено его гидратацией (11) и реакцией (9).

$$SO_2 + H_2O \rightleftharpoons SO_2 \cdot H_2O.$$
 (11)

С увеличением $C^0_{M \supseteq A}$ в точке максимума I соотношение $SO_2:M \supseteq A$ изменяется от 1,0:1,4 ($C^0_{M \supseteq A} = 0,050$ моль/л) до 1,0:2,0 ($C^0_{M \supseteq A} = 0,10 \div 0,20$ моль/л) (табл. 1). Для систем $C^0_{M \supseteq A} = 0,10 \div 0,20$ моль/л в точке максимума I соотношение $SO_2:M \supseteq A = 1,0:2,0$ при постоянном $\Delta pH_{1/2} = 1,20$ (табл. 1). Для относительно разбавленных растворов ($C^0_{M \supseteq A} = 0,050 \div 0,075$ моль/л) величина $\Delta pH_{1/2}$ колеблется в пределах от 1,10 до 1,40.

В изученных системах с ростом $C^0_{M o A}$ от 0,050 моль/л до 0,15 моль/л значения максимума на дифференциальной кривой (dpH/dpQ_{SO2}) уменьшаются от 30,5 до 22,4 (табл. 1). При дальнейшем повышении $C^0_{M o A}$ до 0,20 моль/л величина dpH/dpQ_{SO2} резко увеличивается.

Значения $S_{1/2}$ изменяются практически прямо пропорционально с $C^0_{M \ni A}$ (рис. 2), и зависимость описывается уравнением (12).

$$S_{1/2} = 0,013 + 1,6941; R^2 = 0,96; n = 5.$$
 (12)

Только для системы с $C_{M\Im A}^0 = 0,050$ моль/л в точке максимума II соотношение $SO_2:M\Im A$ равняется ожидаемому стехиометрическому значению 1,0:1,0. В остальных случаях ($C_{M\Im A}^0 = 0,075 \div 0,20$ моль/л) соотношение $SO_2:M\Im A = 0,9:$ 1,0. Подобное смещение максимума II (табл. 1), согласно [4], вызвано равновесием типа (13):

$$2(\text{AmH})\text{HSO}_3 \rightleftharpoons (\text{AmH})_2\text{S}_2\text{O}_5 + \text{H}_2\text{O}.$$
(13)

С увеличением $C^0_{M \supseteq A}$ от 0,050 моль/л до 0,10 моль/л высота полускачка на интегральной кривой ($\Delta p H_{1/2}$) для максимума II уменьшается от 2,00 до 1,05 (табл. 1). Дальнейшее повышение $C^0_{M \supseteq A}$ до 0,20 моль/л вызывает рост $\Delta p H_{1/2}$ вплоть 1,80.

Для максимума II, подобно максимуму I, с увеличением величина dpH/dpQ_{SO_2} имеет тенденцию к уменьшению, а $S_{1/2}$ — к увеличению (табл. 1).

Описанные выше эффекты вызваны, очевидно, гидролитическими процессами в системе $SO_2 - NH_2CH_2CH_2OH - H_2O$. Для более четкой интерпретации полученных результатов в данной работе рассчитаны значения констант комплексообразования сульфита моноэтаноламмония β_1 (уравнение 14) согласно процедуре [8]:

$$2\mathrm{Am} + \mathrm{SO}_2 \cdot \mathrm{H}_2\mathrm{O} \stackrel{\mathrm{Pi}}{\rightleftharpoons} (\mathrm{AmH})_2\mathrm{SO}_3.$$
(14)

Зависимости lg β_I от ионной силы растворов (μ, моль/л) имеют линейный характер (например, рис. 3) и описываются уравнением (15):

$$\lg \beta_{\rm I} = A_i + B_i \mu. \tag{15}$$

29

Параметры уравнения (15) представлены в табл. 2.

14,37

Таблица 2

9

С ⁰ _{МЭА} , моль/л	A_i	B_i	R^2	п
0,075	15,87	-71,62	0,957	13
0,10	19,74	—114,5	0,985	13
0,15	13,75	—16,15	0,973	9

Значения параметров A_i и B_i в уравнении (15)

Процесс образования сульфита моноэтаноламмония смещен вправо, так как значения $\lg \beta_I > 12,2$ (рис. 3). С увеличением общего содержания SO₂ в системах SO₂ — NH₂CH₂CH₂OH — H₂O ионная сила возрастает вследствие накопления сульфит-анионов и моноэтаноламмонийных катионов. При этом уменьшаются концентрационные константы β_I , на что указывают значения B_i (< 15, табл. 2).

-15,81

0,986

С увеличением $C^0_{M \ni A}$ четкой тенденции в изменении значений A_i и B_i не наблюдается (табл. 3), что, очевидно, связано с гидролитическими эффектами. Кроме того, изменение содержания МЭА в воде может вызывать изменения в структуре раствора за счет перераспределения Н-связей. Однако A_i и B_i взаимно компенсируют друг друга — большему первому значению отвечает меньшее второе и наоборот.

На рис. 4 представлена диаграмма долевого распределения различных форм, образующихся в системе SO₂ — HOCH₂CH₂NH₂ — H₂O в зависимо-

0,20

сти от общего содержания оксида серы(IV) при 293 К. С увеличением Q_{SO_2} от $1,5\cdot 10^{-2}$ до $8,5\cdot 10^{-2}$ моль/л наблюдается рост мольных долей «ониевого» сульфита (кривая 8) и этаноламмонийного катиона (кривая 6) относительно $C_{\rm MЭA}^0$ вследствие уменьшения pH и связывания свободного МЭА (кривая 7) в указанные формы. Параллельно происходит увеличение относительного содержания сульфит-анионов (кривая 3) за счет диссоциации «ониевого» сульфита: изменения мольных долей (HOCH_2CH_2NH_3)_2SO_3 (кривая 5) и SO_3^{2-} относительно Q_{SO_2} (кривая 3) и HOCH_2CH_2NH^{3+} (кривая 7) происходит симбатно. В указанном концентрационном интервале содержание форм SO_2·H_2O, HSO_3^-, S_2O_5^{2-} (кривые 1, 2, 4) пренебрежительно мало. Диаграммы долевого распределения различных форм в системах с МЭА при других температурах имеют аналогичный характер и здесь не приводятся.

Таблица З

С _{МЭА} , моль/л	A_i	B_i	R^2	п
0,075	-0,0098	1,187	0,9913	13
0,10	-0,0065	0,832	0,9788	13
0,15	-0,0101	1,301	0,9857	9
0,20	-0,0064	0,952	0,9929	9

Q_{SO2}, моль/л

Рис. 4. Диаграмма долевого распределения различных форм в системе $SO_2 - NH_2CH_2CH_2OH - H_2O$ в зависимости от Q_{SO_2} при 293 К ($C^0_{M \supset A} = 0,20$ моль/л). N — мольная доля комплекса (HOCH_2CH_2NH_3)_2SO_3 (5, 8), SO_2·H_2O (1), HSO_3^- (2), SO_3^{2-} (3), S_2O_5^{2-} (4), HOCH_2CH_2NH_2 (6), HOCH_2CH_2NH_3^+ (7), относительно Q_{SO_2} (1—5) и $C^0_{M \supset A}$ (6—8)

С увеличением общего содержания SO₂ в системах оксид серы(IV) — моноэтаноламин — вода ионная сила возрастает прямолинейно (например, рис. 5) вследствие накопления сульфит-анионов и этаноламмонийных катионов. Указанная зависимость описывается уравнением (16), параметры которого приведены в табл. 3:

$$\boldsymbol{\mu} = \boldsymbol{A}_i + \boldsymbol{B}_i \cdot \boldsymbol{Q}_{SO_2}. \tag{16}$$

Рис. 5. Зависимость ионной силы (μ , моль·л⁻¹) от общего содержания оксида серы (IV) (Q_{SO_2} , моль/л) в системе $SO_2 - NH_2CH_2CH_2OH - H_2O$ 293 К ($C^0_{M ext{DA}} = 0,20$ моль/л)

Таким образом, на модельной системе $SO_2 - HOCH_2CH_2NH_2 - H_2O(C^0_{M\ImA} = 0,050 \div 0,20$ моль/л) показано, ход кривых pH-метрического титрования имеет аналогичный характер (первый скачок титрования, как и второй, лежат примерно в одном диапазоне pH). Во всем исследованном концентрационном диапазоне наблюдается завершение процесса хемосорбции (конец второго скачка титрования) при соотношении $SO_2:M\Im A = n:m$ $(n = 1,1 \div 1,2; m = 1,0)$ и pH 2,10 \div 2,40. Установлена зависимость площади поверхности под участком дифференциальной кривой, лежащим между точками соответствующего максимума и последующего минимума от концентрации МЭА. Полученные результаты могут оказаться полезными при разработке методов санитарной очистки воздуха от оксида серы (IV).

Литература

1. Фелленберг Г. Загрязнение природной среды. Введение в экологическую химию. — М.: Мир, 1997. — 232 с.

2. Очистка технологических газов / Под ред. Семеновой Т. А., Лейтеса И. Л. — М.: Химия, 1977. — 488 с.

3. Гельмбольдт В. О., Хома Р. Е., Эннан А. А. Органические основания в процессах улавливания и утилизации оксида серы (IV) (обзор) // Энерготехнологии и ресурсосбережения. — 2008. — № 4. — С. 51—58.

4. Хома Р. Е., Шестака А. А., Гельмбольдт В. О. Состав и относительная устойчивость продуктов взаимодействия оксида серы (IV) с водными растворами этаноламинов // Вопросы химии и хим. технологии. — 2009. — № 5. — С. 86—89.

5. Шестака А. А. Хемосорбция оксида серы (IV) водными растворами этаноламинов // Друга всеукраїнська наукова конференція студентів та аспірантів «Хімічні Каразінські читання — 2010» — Харків 19—22 квітня 2010 р.

«Хімічні Каразінські читання — 2010». — Харків, 19—22 квітня 2010 р. 6. Хома Р. Е., Никитин В. И., Гавриленко М. И. О взаимодействии диоксида серы с водными растворами карбамида // Ж. прикл. химии. — 2003. — Т. 76. — № 4. — С.533—537.

7. Хома Р. Е., Гавриленко М. И., Никитин В. И. Взаимодействие диоксида серы с водными растворами амидов // Ж. общ. химии. — 2005. — Т. 75. — № 5. — С. 771—777.

8. Ruslan E. Khoma, Alexander A. Shestaka, Alim A. Ennan, Vladimir O. Gelmboldt. Mathematical modeling of the complexation in the systems «sulphur dioxide — ethanolamines — water» // Int. Conf. dedicated to the 50th anniversary from the foundation of the Institute of Chemistry of the Academy of Sciences of Moldova: Book of Abstracts. May 26—28, 2009, Chisinau, Moldova. — P. 92.

Р. Є. Хома^{1, 2}, О. О. Шестака¹, В. О. Гельмбольдт^{1, 3} ¹ Фізико-хімічний інститут захисту навколишнього середовища і людини Міністерства освіти та науки України і НАН України, вул. Преображенська, 3, Одеса, 65082; eksvar@ukr.net

- ² Одеський національний університет імені І. І. Мечникова, вул. Дворянська, 2, Одеса, 65082; e-mail: rek@onu.edu.ua
 ³ Одеський національний медичний університет,
- пер. Валіховський, 2, Одеса, 65082, Україна

ВЗАЄМОДІЯ ОКСИДУ СІРКИ(VI) З ВОДНИМИ РОЗЧИНАМИ МОНОЕТАНОЛАМІНУ

Резюме

Показано, що хід кривих pH-метричного титрування водних розчинів моноетаноламіну (MEA) газоподібним SO₂ не залежить від вихідної концентрації MEA та має аналогічний характер. Запропонована схема процесів, що реалізуються в реакційному середовищі SO₂ — MEA — H₂O. Хемосорбція завершується при співвідношенні SO₂:MЭA = n:m ($n = 1, 1 \div 1, 2; m = 1, 0$) та pH 2,10÷2,40.

Ключові слова: оксид сірки(IV), моноетаноламін, водні розчини, «онієві» сульфіти.

R. E. Khoma^{1, 2}, A. A. Shestaka¹, V. O. Gelmboldt^{1, 3}

¹ Physico-Chemical Institute of Environment and Human Protection, Preobrazhenskaya str., 3, Odessa, 65082, Ukraine, eksvar@ukr.net

- ² Odessa I. I. Mechnikov National University, Dvoryankaya str., 2,
- Odessa, 65082, Ukraine; email: rek@onu.edu.ua ³ Odessa National Medical University, Valikhovskiy lane, 2, Odessa, 65082, Ukraine

SULPHUR DIOXIDE INTERACTION WITH MONOETHANOLAMINE AQUEOUS SOLUTIONS

Summary

The trend of curves of monoethanolamine (MEA) aqueous solutions pH-metrical titration with gaseous SO2 does not depend on the initial MEA concentration and has analogical character. The scheme of processes taking place in the $SO_2 - MEA - H_2O$ reacting system has been suggested. MEA chemical absorption is completed at SO_2 :MEA molar ratio 1,1÷1,2:1,0 and pH 2,10÷2,40. Key words: sulphur dioxide, monoethanolamine, aqueous solutions, «onium»

sulphites.