УДК 546.224-31:547.262-304.2

Р. Е. Хома ^{1, 2}, А. А. Шестака ¹, В. О. Гельмбольдт ^{1, 3}

- Физико-химический институт защиты окружающей среды и человека Министерства образования и науки Украины и НАН Украины, ул. Преображенская, 3, Одесса, 65082, Украина; email: eksvar@ukr.net
- ² Одесский национальный университет имени И.И.Мечникова, ул. Дворянская, 2, Одесса, 65082, Украина; email: rek@onu.edu.ua
- ³ Одесский национальный медицинский университет, пер. Валиховский, 2, Одесса, 65082, Украина

ВЗАИМОДЕЙСТВИЕ ОКСИДА СЕРЫ(IV) С ВОДНЫМИ РАСТВОРАМИ МОНОЭТАНОЛАМИНА

Показано, что ход кривых рH-метрического титрования водных растворов моноэтаноламина (МЭА) газообразным SO_2 имеет аналогичный характер. Предложена схема процессов, реализующихся в реакционной системе $SO_2 - M \ni A - H_2O$. Хемосорбция завершается при мольном соотношении $SO_2: M \ni A = n:m$ $(n=1,1 \div 1,2; \ m=1,0)$ и pH $2,10 \div 2,40$.

Ключевые слова: оксид серы (IV), моноэтаноламин, водные растворы, «ониевые» сульфиты.

Цель настоящей работы — изучение взаимодействия оксида серы(IV) с водными растворами моноэтаноамина (МЭА, $NH_2CH_2CH_2OH$, Am) методом рН-метрического титрования, причем для выявления возможных корреляций «концентрация МЭА — характеристики абсорбционной системы» в данной работе использован концентрационный диапазон органического основания (МЭА) $0,050 \div 0,20$ М. Ранее [4, 5] система $SO_2 - NH_2CH_2CH_2OH - H_2O$ была изучена при концентрации МЭА, равной 0,10 М.

Методика проведения эксперимента детально описана в [6, 7]. На рис. 1 представлены данные рН-метрического титрования водных $0,050 \div 0,20$ М растворов МЭА газообразным оксидом серы(IV) при 293 К.

Согласно полученным данным (рис. 1, табл. 1) во всех исследованных системах первый скачок титрования лежит в области рН $9,40\div6,80$, а второй — $6,65\div2,10$. Вначале при поглощении SO_2 растворами МЭА происходит образование сульфитов (уравнения 1-3; рН $\geqslant 11,0$), которые преобразуются в гидросульфиты (уравнения 4,5; первый скачок титрования). Последний процесс завершается при рН $6,65\div6,80$. В точке середины первого скачка титрования (рН $7,80\div8,20$) начинается процесс (6).

Таблица 1

Характеристики интегральных и дифференциальных рН-метрических кривых титрования водных растворов МЭА газо-образным оксидом серы(IV)

C. 34.		I	І максимум				I	II максимум		
моль/л	SO ₂ :M3A	Hď	$\Delta p H_{1/2}^{-*}$	dpH/dpQ _{SO2}	S _{1/2} **	SO ₂ :MЭA	Hd	$\Delta p H_{1/2}^{} *$	dpH/dpQ _{SO2}	S _{1/2} **
0,050	1,0:1,4	9,60÷6,75	1,10	30,5	0,093	1,0:1,0	6,75÷2,35	2,00	147,6	0,291
0,075	1,0:1,9	9,50÷6,80	1,40	26,5	0,160	0,9:1,0	6,80÷2,40	1,40	147,6	0,345
0,10	1,0:2,0	9,60÷6,80	1,20	22,8	0,180	0,9:1,0	6,80÷2,20	1,05	112,4	0,400
0,15	1,0:2,0	9,40÷6,80	1,20	22,4	0,236	0,9:1,0	6,80÷2,35	1,15	98,5	0,480
0,20	1,0:2,0	9,60÷6,65	1,20	29,8	0,370	0,9:1,0	6,65÷2,10	1,80	86,0	1,028

скачка титрования и его концом; ** S_{1/2} — площадь поверхности под участком дифференциальной кривой, лежащим между точками соответствующего мак-симума и последующего минимума * $\Delta p H_{1/2}$ — высота скачка на интегральной кривой рН-метрического титрования, находящегося между точкой середины

$$SO_2 + H_2O + 2Am \Rightarrow SO_3^{2-} + 2AmH^+;$$
 (1)

$$SO_2 + H_2O + 2Am \rightleftharpoons (AmH)_2SO_3;$$
 (2)

$$SO_2 + OH^- + Am \rightleftharpoons SO_3^{2-} + AmH^+; \tag{3}$$

$$SO_2 + H_2O + SO_3^{2-} \rightleftharpoons 2HSO_3^-; \tag{4}$$

$$SO_2 + (AmH)_2SO_3 \rightleftharpoons 2(AmH)HSO_3;$$
 (5)

 $SO_2 + OH^- \rightleftharpoons HSO_3^-.$ (6)

Дальнейшее добавление SO_2 приводит к переходу гидросульфитных соединений в пиросульфитные (уравнения 7, 8), а процессы (1—3) прекращаются [5]. Поскольку при этом рН < 7,0, то начинается реакция (9) и происходит связывание свободного $M\ni A$ в гидросульфитный комплекс (уравнение 10).

$$SO_2 + HSO_3^- \rightleftharpoons S_2O_5^{2-}; \tag{7}$$

$$2(AmH)HSO_3 \rightleftharpoons (AmH)2S_2O_5 + H_2O;$$
 (8)

$$SO_2 + H_2O \rightleftharpoons HSO_3^- + H^+; \tag{9}$$

$$SO_2 + H_2O + Am \rightleftharpoons (AmH)HSO_3.$$
 (10)

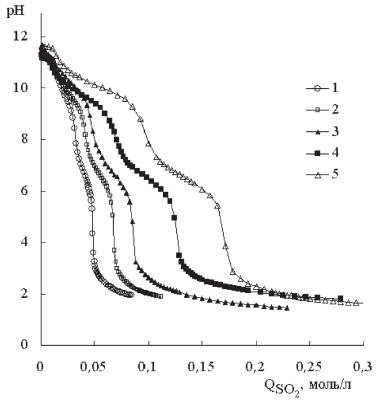


Рис. 1. рН-метрические кривые титрования водных растворов МЭА газообразным SO $_2$ при 293 K. С $_{\rm MЭA}^0$ (моль/л): 1 — 0,050; 2 — 0,075; 3 — 0,10 [4]; 4 — 0,15; 5 — 0,20

В точке середины второго скачка титрования (pH 3,25 \div 4,35) МЭА прекращает вести себя в качестве бренстедовского основания (SO₂: MЭA = 0,9 \div 1,0:1,0). Последующее понижение pH обусловлено только процессом (9). В точке конца второго скачка титрования при pH 2,10 \div 2,40 и SO₂: МЭА = 1,1 \div 1,2:1,0 завершается процесс (10). Дальнейшее связывание SO₂ обусловлено его гидратацией (11) и реакцией (9).

$$SO_2 + H_2O \rightleftharpoons SO_2 \cdot H_2O.$$
 (11)

С увеличением $C_{M \ni A}^0$ в точке максимума I соотношение SO_2 : МЭА изменяется от 1,0:1,4 ($C_{M \ni A}^0=0{,}050$ моль/л) до 1,0:2,0 ($C_{M \ni A}^0=0{,}10 \div 0{,}20$ моль/л) (табл. 1). Для систем $C_{M \ni A}^0=0{,}10 \div 0{,}20$ моль/л в точке максимума I соотношение SO_2 : МЭА = 1,0:2,0 при постоянном $\Delta pH_{1/2}=1{,}20$ (табл. 1). Для относительно разбавленных растворов ($C_{M \ni A}^0=0{,}050 \div 0{,}075$ моль/л) величина $\Delta pH_{1/2}$ колеблется в пределах от 1,10 до 1,40.

В изученных системах с ростом $C_{M \ni A}^0$ от 0,050 моль/л до 0,15 моль/л значения максимума на дифференциальной кривой (dpH/dpQ_{SO2}) уменьшаются от 30,5 до 22,4 (табл. 1). При дальнейшем повышении $C_{M \ni A}^0$ до 0,20 моль/л величина dpH/dpQ_{SO2} резко увеличивается

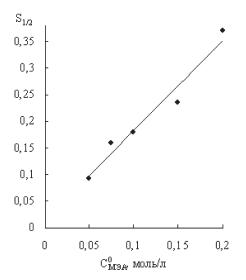
величина dpH/dpQ_{SO_2} резко увеличивается. Значения $S_{1/2}$ изменяются практически прямо пропорционально с $C^0_{M \ni A}$ (рис. 2), и зависимость описывается уравнением (12).

$$S_{1/2} = 0.013 + 1.6941; R^2 = 0.96; n = 5.$$
 (12)

Только для системы с $C_{\text{MЭA}}^0 = 0{,}050$ моль/л в точке максимума II соотношение SO_2 :МЭА равняется ожидаемому стехиометрическому значению 1,0:1,0. В остальных случаях ($C_{\text{МЭА}}^0 = 0{,}075 \div 0{,}20$ моль/л) соотношение SO_2 : МЭА = 0,9: 1,0. Подобное смещение максимума II (табл. 1), согласно [4], вызвано равновесием типа (13):

$$2(AmH)HSO_3 \rightleftharpoons (AmH)_2S_2O_5 + H_2O.$$
 (13)

С увеличением $C_{M \ni A}^0$ от 0,050 моль/л до 0,10 моль/л высота полускачка на интегральной кривой ($\Delta p H_{1/2}$) для максимума II уменьшается от 2,00 до 1,05 (табл. 1). Дальнейшее повышение $C_{M \ni A}^0$ до 0,20 моль/л вызывает рост $\Delta p H_{1/2}$ вплоть 1,80.


Для максимума II, подобно максимуму I, с увеличением величина dpH/dpQ_{SO_2} имеет тенденцию к уменьшению, а $S_{1/2}$ — к увеличению (табл. 1).

Описанные выше эффекты вызваны, очевидно, гидролитическими процессами в системе SO_2 — $NH_2CH_2CH_2OH$ — H_2O . Для более четкой интерпретации полученных результатов в данной работе рассчитаны значения констант комплексообразования сульфита моноэтаноламмония β_I (уравнение 14) согласно процедуре [8]:

$$2Am + SO_2 \cdot H_2O \stackrel{\beta_1}{\rightleftharpoons} (AmH)_2SO_3. \tag{14}$$

Зависимости $\lg \beta_I$ от ионной силы растворов (μ , моль/л) имеют линейный характер (например, рис. 3) и описываются уравнением (15):

$$\lg \beta_{\rm I} = A_i + B_i \mu. \tag{15}$$

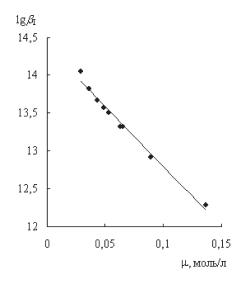


Рис. 2. Зависимость $S_{1/2}$ от $C^0_{\text{M} \ni A}$ при 293 K

Рис. 3. Зависимость $\lg \beta_1$ от ионной силы (μ , моль/л) в системе SO_2 — $NH_2CH_2CH_2OH$ — H_2O при 293 K ($C_{M\ni A}^0=0,20$ моль/л)

Параметры уравнения (15) представлены в табл. 2.

Таблица 2

$C_{M\ni A}^0$, моль/л	A_i	B_i	R^2	п
0,075	15,87	 71,62	0,957	13
0,10	19,74	—114,5	0,985	13
0,15	13,75	-16,15	0,973	9
0,20	14,37	-15,81	0,986	9

Значения параметров A_i и B_i в уравнении (15)

Процесс образования сульфита моноэтаноламмония смещен вправо, так как значения $\lg \beta_1 > 12,2$ (рис. 3). С увеличением общего содержания SO_2 в системах $SO_2 — NH_2CH_2CH_2OH — H_2O$ ионная сила возрастает вследствие накопления сульфит-анионов и моноэтаноламмонийных катионов. При этом уменьшаются концентрационные константы β_1 , на что указывают значения B_i (< 15, табл. 2).

С увеличением $C^0_{M \ni A}$ четкой тенденции в изменении значений A_i и B_i не наблюдается (табл. 3), что, очевидно, связано с гидролитическими эффектами. Кроме того, изменение содержания МЭА в воде может вызывать изменения в структуре раствора за счет перераспределения Н-связей. Однако A_i и B_i взаимно компенсируют друг друга — большему первому значению отвечает меньшее второе и наоборот.

На рис. 4 представлена диаграмма долевого распределения различных форм, образующихся в системе SO_2 — $HOCH_2CH_2NH_2$ — H_2O в зависимо-

сти от общего содержания оксида серы(IV) при 293 К. С увеличением Q_{SO_2} от $1,5\cdot 10^{-2}$ до $8,5\cdot 10^{-2}$ моль/л наблюдается рост мольных долей «ониевого» сульфита (кривая δ) и этаноламмонийного катиона (кривая δ) относительно C_{M9A}^0 вследствие уменьшения рН и связывания свободного M9A (кривая δ) в указанные формы. Параллельно происходит увеличение относительного содержания сульфит-анионов (кривая δ) за счет диссоциации «ониевого» сульфита: изменения мольных долей (HOCH $_2$ CH $_2$ NH $_3$) $_2$ SO $_3$ (кривая δ) и SO $_3^2$ относительно Q_{SO_2} (кривая δ) и HOCH $_2$ CH $_2$ NH $_3$ + (кривая δ) происходит симбатно. В указанном концентрационном интервале содержание форм SO $_2\cdot$ H $_2$ O, HSO $_3^-$, S $_2$ O $_5^2$ (кривые δ) пренебрежительно мало. Диаграммы долевого распределения различных форм в системах с δ 0A при других температурах имеют аналогичный характер и здесь не приводятся.

 $аg{T}$ аблица $ag{3}$ Значения параметров $ag{A}_{i}, \; extbf{\emph{B}}_{i}$ в уравнении (16)

$C^0_{M in A}$, моль/л	A_i	B_i	R^2	n
0,075	-0,0098	1,187	0,9913	13
0,10	-0,0065	0,832	0,9788	13
0,15	-0,0101	1,301	0,9857	9
0,20	-0,0064	0,952	0,9929	9

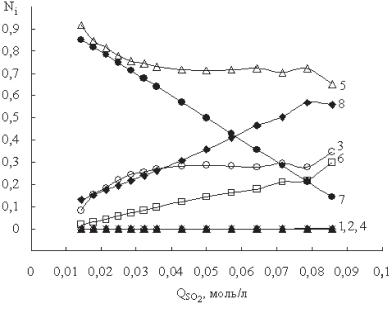


Рис. 4. Диаграмма долевого распределения различных форм в системе $SO_2-NH_2CH_2CH_2OH-H_2O$ в зависимости от Q_{SO_2} при 293 K ($C_{M\ni A}^0=0,20$ моль/л). N— мольная доля комплекса (HOCH $_2$ CH $_2$ NH $_3$) $_2$ SO $_3$ (5, 8), SO $_2$ ·H $_2$ O (1), HSO $_3^-$ (2), SO $_3^2-$ (3), S $_2$ O $_2^2-$ (4), HOCH $_2$ CH $_2$ NH $_3$ (6), HOCH $_2$ CH $_2$ NH $_3^+$ (7), относительно Q_{SO_2} (1—5) и $C_{M\ni A}^0$ (6—8)

С увеличением общего содержания SO_2 в системах оксид серы(IV) — моноэтаноламин — вода ионная сила возрастает прямолинейно (например, рис. 5) вследствие накопления сульфит-анионов и этаноламмонийных катионов. Указанная зависимость описывается уравнением (16), параметры которого приведены в табл. 3:

$$\mu = A_i + B_i \cdot Q_{SO_2}. \tag{16}$$

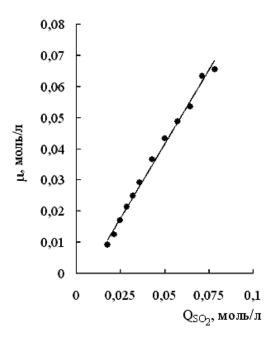


Рис. 5. Зависимость ионной силы (μ , моль· π^{-1}) от общего содержания оксида серы (IV) (Q_{SO_2} , моль/ π) в системе SO_2 — $NH_2CH_2CH_2OH$ — H_2O 293 K ($C_{MA}^0 = 0.20$ моль/ π)

Таким образом, на модельной системе SO_2 — $HOCH_2CH_2NH_2$ — $H_2O(C_{M\ni A}^0=0.050\div0.20$ моль/л) показано, ход кривых pH-метрического титрования имеет аналогичный характер (первый скачок титрования, как и второй, лежат примерно в одном диапазоне pH). Во всем исследованном концентрационном диапазоне наблюдается завершение процесса хемосорбции (конец второго скачка титрования) при соотношении $SO_2:M\ni A=n:m$ $(n=1,1\div1,2;\ m=1,0)$ и pH $2,10\div2,40$. Установлена зависимость площади поверхности под участком дифференциальной кривой, лежащим между точками соответствующего максимума и последующего минимума от концентрации $M\ni A$. Полученные результаты могут оказаться полезными при разработке методов санитарной очистки воздуха от оксида серы (IV).

Литература

1. Фелленберг Г. Загрязнение природной среды. Введение в экологическую химию. — М.: Мир, 1997. — 232 с.

- 2. Очистка технологических газов / Под ред. Семеновой Т. А., Лейтеса И. Л. М.: Химия, 1977. 488 с.
- 3. Гельмбольдт В. О., Хома Р. Е., Эннан А. А. Органические основания в процессах улавливания и утилизации оксида серы (IV) (обзор) // Энерготехнологии и ресурсосбережения. 2008. \mathbb{N}_{2} 4. С. 51—58.
- 4. Хома Р. Е., Шестака А. А., Гельмбольдт В. О. Состав и относительная устойчивость продуктов взаимодействия оксида серы (IV) с водными растворами этаноламинов // Вопросы химии и хим. технологии. 2009. № 5. С. 86—89.
- 5. Шестака А. А. Хемосорбция оксида серы (IV) водными растворами этаноламинов // Друга всеукраїнська наукова конференція студентів та аспірантів «Хімічні Қаразінські читання 2010». Харків, 19—22 квітня 2010 р.
- 7. Хома Р. Е., Гавриленко М. И., Никитин В. И. Взаимодействие диоксида серы с водными растворами амидов // Ж. общ. химии. 2005. Т. 75. № 5. С. 771—777.
- 8. Ruslan E. Khoma, Alexander A. Shestaka, Alim A. Ennan, Vladimir O. Gelmboldt. Mathematical modeling of the complexation in the systems «sulphur dioxide ethanolamines water» // Int. Conf. dedicated to the 50th anniversary from the foundation of the Institute of Chemistry of the Academy of Sciences of Moldova: Book of Abstracts. May 26—28, 2009, Chisinau, Moldova. P. 92.

Р. Є. Хома ^{1, 2}, О. О. Шестака ¹, В. О. Гельмбольдт ^{1, 3}

- Фізико-хімічний інститут захисту навколишнього середовища і людини Міністерства освіти та науки України і НАН України, вул. Преображенська, 3, Одеса, 65082; eksvar@ukr.net
- ² Одеський національний університет імені І. І. Мечникова, вул. Дворянська, 2, Одеса, 65082; e-mail: rek@onu.edu.ua
- ³ Одеський національний медичний університет, пер. Валіховський, 2, Одеса, 65082, Україна

ВЗАЄМОДІЯ ОКСИДУ СІРКИ(VI) З ВОДНИМИ РОЗЧИНАМИ МОНОЕТАНОЛАМІНУ

Резюме

Показано, що хід кривих рН-метричного титрування водних розчинів моноетаноламіну (MEA) газоподібним SO_2 не залежить від вихідної концентрації MEA та має аналогічний характер. Запропонована схема процесів, що реалізуються в реакційному середовищі $SO_2 - MEA - H_2O$. Хемосорбція завершується при співвідношенні $SO_2: M\ni A = n:m$ $(n=1,1\div1,2;\ m=1,0)$ та pH $2,10\div2,40$.

Ключові слова: оксид сірки(IV), моноетаноламін, водні розчини, «онієві» сульфіти.

R. E. Khoma 1, 2, A. A. Shestaka 1, V. O. Gelmboldt 1, 3

¹ Physico-Chemical Institute of Environment and Human Protection, Preobrazhenskaya str., 3, Odessa, 65082, Ukraine, eksvar@ukr.net

² Odessa I. I. Mechnikov National University, Dvoryankaya str., 2, Odessa, 65082, Ukraine; email: rek@onu.edu.ua

Odessa National Medical University, Valikhovskiy lane, 2, Odessa, 65082, Ukraine

SULPHUR DIOXIDE INTERACTION WITH MONOETHANOLAMINE AQUEOUS SOLUTIONS

Summary

The trend of curves of monoethanolamine (MEA) aqueous solutions pH-metrical titration with gaseous SO2 does not depend on the initial MEA concentration and has analogical character. The scheme of processes taking place in the SO_2 — MEA — H_2O reacting system has been suggested. MEA chemical absorption is completed at SO_2 :MEA molar ratio $1,1\div1,2:1,0$ and pH $2,10\div2,40$.

Key words: sulphur dioxide, monoethanolamine, aqueous solutions, «onium»

sulphites.