УДК 542.8:546.3

А. А. Джамбек, О. И. Джамбек, И. А. Блайда, Т. В. Васильева, Л. И. Слюсаренко Одесский национальный университет им. И. И. Мечникова, Биотехнологический научно-учебный центр, ул. Дворянская, 2, Одесса, 65082, Украина

ИЗУЧЕНИЕ КИНЕТИКИ ВЫЩЕЛАЧИВАНИЯ ОТВАЛОВ УГЛЕОБОГАЩЕНИЯ МЕТОДОМ ЦИКЛИЧЕСКОЙ ВОЛЬТАМПЕРОМЕТРИИ

Проведено электрохимическое исследование процесса выщелачивания металлов из твердого техногенного субстрата методом циклической вольтамперометрии. Установлена зависимость скорости окислительно-восстановительных реакций от состава минеральных растворов, присутствия штаммов бактерий и длительности процесса выщелачивания.

Ключевые слова: выщелачивание, отвал, циклическая вольтамперометрия.

При биовыщелачивании минералов протекают электрохимические и химические реакции минералов с раствором для выщелачивания и внеклеточными полисахаридными слоями на микроорганизмах [1, 2]. В результате протекания окислительно-восстановительных реакций в растворе устанавливается смешанный окислительно-восстановительный потенциал между одноименными ионами переменной валентности. Скорость изменения смешанного потенциала будет определять кинетику реакций в системе раствор – твердый субстрат. Установление постоянного значения равновесного потенциала в системе свидетельствует об окончании процесса выщелачивания.

Цель работы – определить влияние состава минеральных растворов со штаммами бактерий и в их отсутствии, а также длительности процесса на скорость окислительно-восстановительных реакций, протекающих при химическом и бактериальном выщелачивании отвала техногенного происхождения методом циклической вольтамперометрии.

Материалы и методы исследования

Исследования проводили на примере красного образца горного отвала углеобогащения с длительным сроком хранения в природных условиях в растворах минеральных компонентов: 0,1 н H₂SO₄(I); питательная среда (II). Состав питательной среды, г/л: (NH₄)₂ SO₄ – 3,0; KCl – 0,1; K₂HPO₄ – 0,5; MgSO₄ – 0,5; Ca(NO₃)₂ – 0,01; FeSO₄ – 2,5; 0,001 н H₂SO₄; pH \leq 1,6÷1,7. Соотношение твердой и жидкой фази – 1:10. Окислительно-восстановительные процессы изучали для следующих систем: отвал + 0,1 н H₂SO₄ (1); питательная среда (2); отвал + питательная среда (3); отвал + питательная среда + штаммы бактерий (4).

Электрохимические исследования проводили на потенциостате ПИ-50-1.1 в трехэлектродной ячейке при температуре 30°С в течение 15-16 суток. В качестве рабочего и вспомогательного электродов использовали пористые электроды на основе ацетиленовой сажи, изготовленные прессованием гидрофобизированных активного и запорного слоев с токовым коллектором и последующей термической

[©] А. А. Джамбек, О. И. Джамбек, И. А. Блайда,

Т. В. Васильева, Л. И. Слюсаренко, 2014

обработкой. Методика испытаний включала снятие *I-E* кривых при развертывании потенциала от стационарного в катодную или анодную область в зависимости от определяемого иона один раз в сутки. Предварительно был определен оптимальный режим испытаний: интервал потенциала $-0,05 \div 1$ В (электрод сравнения Ag/AgCl); скорость сканирования потенциала 20 мВ/с. В данном интервале потенциалов протекают исследуемые окислительно-восстановительные процессы, и не наблюдается выделение O₂ (>1 В) и H₂O₂ (<-0,05 В). Более четкие максимумы на *I-E* кривых получены при скорости сканирования потенциала 20 мВ/с.

Результаты и их обсуждение

Типичные *I-E* кривые, полученные для системы (3) при развертывании потенциала в анодную и катодную области, приведены на рис. 1. На *I-E* кривых наблюдаются ярковыраженные максимумы, которые отвечают основным окислительновосстановительным процессам.

Рис. 1. Циклические *I-E* кривые при развертывании потенциала в анодную (1) и катодную (2) области для системы отвал + питательная среда. Условия съемки:
 ${\rm \acute{0}}_{\rm pas}$ = 20 мB/c; x = 50 мB/cm; y = 1 мA/cm

Анализ результатов электрохимических исследований показал, что на циклических *I-E* кривых для всех систем наблюдаются максимумы разной интенсивности в катодной и анодной областях, отвечающие восстановлению (Fe³⁺ + $\bar{e} \rightarrow$ Fe²⁺) и окислению (Fe²⁺ – $\bar{e} \rightarrow$ Fe³⁺) ионов железа, соответственно. Интенсивность данных максимумов определяется концентрацией ионов Fe²⁺ и Fe³⁺ в растворе. Кроме того, для систем (3) и (4) в катодной области в интервале потенциалов 0,1÷0,25 В наблюдается еще один максимум, которому отвечает окислительновостановительный процесс, связанный с переходом Me^{y+} + xē \rightarrow Me^{(y-x)+}, одинаковой интенсивности для двух систем (рис. 1). Данная реакция в отличие от реакции для ионов железа протекает необратимо. Очевидно, ион Me^{y+}, присутствующий в отвале, окисляет ион Fe²⁺, и переходит в раствор. Катализаторами данного процесса являются, очевидно, аборигенные бактерии или введенные штаммы бактерий.

По предварительным данным качественного и количественного анализов данному катиону отвечает ион Mn^{7+} .

Согласно результатов зависимости смешанного потенциала от времени выщелачивания (рис. 2) для всех исследуемых систем, за исключением системы (2), наблюдается скачок потенциала, вызванный изменением соотношения концентраций ионов железа от Fe^{2+} : $Fe^{3+} > 1$ до Fe^{2+} : $Fe^{3+} < 1$ (рис. 3, 4).

Рис. 2. Зависимость смешанного потенциала от времени выщелачивания для систем: 1 – отвал + 0,1н H₂SO₄; 2 – питательная среда; 3 – отвал + питательная среда; 4 – отвал + питательная среда + штаммы бактерий

Незначительное изменение концентрации одного их ионов вблизи равновесных концентраций $[Fe^{2+}] = [Fe^{3+}]$ вызывает резкое изменение величины потенциала. В данном случае наблюдается рост потенциала от 0,4 до 0,6 В. После скачка потенциала наступает его стабилизация для всех систем, кроме системы (2). Время стабилизации потенциала для систем (1) и (4) составило 14 суток, а для системы (3) – 7 суток. Стабилизация потенциала при значении 0,6 В наступает при достижении рН гидратообразования малодиссоциированных ионов FeOH²⁺, равного 1,5 [3], и выпадении их в осадок. Для системы (2) за время эксперимента не достигается состояние равновесия [Fe²⁺] = [Fe³⁺]. Происходит медленное окисление ионов Fe²⁺ кислородом воздуха в отсутствии катализатора с дальнейшим выпадением в осадок FeOH²⁺.

Изучение зависимости концентрации ионов, которую определяли по емкости полуволны окислительно-восстановительных процессов [5], от времени выщелачивания показало, что для системы (1) (рис. 3) концентрация Fe³⁺ выше, чем Fe²⁺ на протяжении всего эксперимента.

Рис. 3. Зависимость концентрации и
онов от времени выщелачивания для системы отвал + 0,1
н $\rm H_2SO_4.$ Сн, экв.м./л: 1 – Fe²+, 2 – Fe³+, 3 – Fe
_ofm

Рис. 4. Зависимость концентрации ионов от времени выщелачивания для системы отвал + питательная среда без штаммов бактерий (а) и в их присутствии (б). Сн, экв.м./л: 1 – Fe²⁺, 2 – Fe³⁺, 3 – Fe_{общ}, 4 – Ме^{у+}.

Для системы (3) (рис. 4а) скорость окисления ионов Fe²⁺ значительно возрастает, и на 7 сутки их концентрация равна нулю. Очевидно, в присутствии питательной среды активизируются аборигенные бактерии отвала, что подтверждается работой [4]. Скорость увеличения концентрации ионов Me^{y+} практически совпадает со скоростью изменения концентрации ионов Fe³⁺. Стабилизация концентрации ионов Me^{y+} наблюдается на 14 сутки. Введение штаммов бактерий в систему (3) (рис. 4б) не изменяет характера кривых зависимости концентрации определяемых ионов от времени выщелачивания. Для всех систем, кроме системы (1), через 4 суток наблюдается снижение общей концентрации железа ($C_{Fe(ofuu)}$), что вызвано достижением значения pH гидратообразования малодиссоциированных ионов FeOH²⁺ и выпадением их в осадок.

На рис. 5 показана зависимость скорости изменения потенциала от времени выщелачивания для исследуемых систем.

от времени выщелачивания для разных систем: 1 – отвал + 0,1н H₂SO₄; 2 – отвал + питательная среда; 3 – отвал + питательная среда + штаммы бактерий

Максимальная скорость изменения потенциала при выщелачивании образца отвала (~ 50мВ/сутки) наблюдается для системы (2) на 6 сутки. Для систем (1) и (3) скорость изменения потенциала примерно одинаковая (25-30 мВ/сутки) и наблюдается на 14 сутки. Наличие максимумов на кривых зависимости обусловлено установлением равновесия Fe²⁺ _{p-op} ↔ Fe³⁺ _{p-op}. Проведенные исследования показали, что при выщелачивании образца отвала

Проведенные исследования показали, что при выщелачивании образца отвала наблюдается последовательное протекание трех процессов: переход ионов Fe^{2+} из отвала в раствор; окисление ионов Fe^{2+} до Fe^{3+} кислородом воздуха или штаммами бактерий; гидролиз ионов Fe^{3+} с образованием малодиссоциированных ионов $FeOH^{2+}$. Максимальная скорость изменения потенциала, а значит и скорость выщелачивания, наблюдается для системы отвал + питательная среда, в состав которой входят ионы Fe^{2+} . В присутствии бактерий процесс выщелачивания замедляется, что частично связано [6] с образованием осадка продуктов гидролиза ионов Fe^{3+} , который, очевидно, препятствует транспортным процессам на поверхности клетки.

Литература

- Chemical and electrochemical basis of bioleaching processes / G.S. Hansford, T. Vargas // Hydrometallurgy. 2001. – Vol. 59. – P. 135-145.
- Electrobioleaching of chalcopyrite / Abhakumari and K.A. Natarajan // XXVI International Mineral Processing congress (MPC): Proceedings. – New Delhi (India), 2012. – P. 717.
- 3. Скорчеллетти В.В. Теоретическая электрохимия. Л.: Химия, 1969. 608 с.

- Джамбек А.А., Джамбек О.И., Блайда И.А., Васильева Т.В. Электрохимическое исследование процессов химического и бактериального выщелачивания металлов // Сб. докл. II Междунар. науч.-практ. конф. «Современные ресурсосберегающие технологии. Проблемы и перспективы». – Одесса, 2012. – С. 247-252.
- Джамбек А.А., Джамбек О.И., Блайда И.А., Васильева Т.В., Слюсаренко Л.И. Электрохимическое исследование окислительно-восстановительных процессов, протекающих при химическом выщелачивании металлов // Вісник ОНУ. Хімія. 2013. Т. 18, вип. 1 (45). С. 39-43.
- 6. *Biological* oxidation of ferrous sulphate by *Thiobacillus ferrooxidans*: a review on kinetic aspects / Nemati, M., Harrison, S.T.L., Hansford, G.S., Webb, C. // Biochemical Engineering Journal 1. – 1998. – P. 171-190.

Стаття надійшла до редакції 10.02.14

О. А. Джамбек, О. І. Джамбек, І. А. Блайда, Т. В. Васильєва, Л. І. Слюсаренко

Одеський національний університет ім. І. І. Мечникова, Біотехнологічний науково-навчальний центр, вул. Дворянська, 2, Одеса, 65082, Україна

ВИВЧЕННЯ КІНЕТИКИ ВИЛУДЖУВАННЯ ВІДВАЛІВ ВУГЛЕЗБАГАЧЕННЯ МЕТОДОМ ЦИКЛІЧНОЇ ВОЛЬТАМПЕРОМЕТРІЇ

Резюме

Проведено електрохімічне дослідження процесу вилуджування металів з твердого техногенного субстрату методом циклічної вольтамперометрії. Встановлено залежність швидкості окислювально-відновних реакцій від складу мінеральних розчинів, присутності штамів бактерій та тривалості процесу вилуджування.

Ключові слова: вилуджування, відвал, циклічна вольтамперометрія.

A. A. Dzhambek, O. I. Dzhambek, I. A. Blayda, T. V. Vasyleva, L. I. Slyusarenko Odessa National University, Biotechnological Scientific – educational Centre, Dvoryanskaya Str., 2, Odessa, 65082, Ukraine

THE STUDYING OF KINETICS OF DUMPS LEACHING OF COALCONCENTRATING WITH METHOD OF CYCLIC VOLTAMMETRY

Summary

Electrochemical research of process of leaching of metals from firm anthropogenic substrate was carried by cyclic voltammetry method. The dependence of oxidation-reduction reactions speed from composition of mineral solutions, presence of bacterial strains and duration of leaching process is determined.

Key words: leaching, dump, cyclic voltammetry.