УДК 541.64:542.952.6

О. В. Шевченко, И. С. Волошановский, Е. В. Буренкова

Одесский национальный университет им. Мечникова, кафедра органической химии, ул. Дворянская, 2, Одесса, 65082, Украина e-mail: volis15@ukr.net

ПРИЧИНЫ КИНЕТИЧЕСКИХ И СТРУКТУРНЫХ ОСОБЕННОСТЕЙ ПОЛИМЕРИЗАЦИИ МЕТИЛМЕТАКРИЛАТА, ИНИЦИИРОВАННОЙ МЕТАКРИЛОИЛАЦЕТОНАТОМ КОБАЛЬТА (II)

Рассмотрены причины кинетических и структурных особенностей полимеризации метилметакрилата, инициированной 5-метил-5-гексен-2,4-дионатом кобальта (II). Показано, что аномально низкие скорости полимеризации и структурирование полимеров связано с образованием сопряженных радикалов металлохелата и полярным фактором мономера.

Ключевые слова: винил-β-дикетонаты, радикальная полимеризация, полиметилметакрилат, структурирование.

Ранее нами была изучена полимеризация стирола и метилметакрилата (ММА), инициированная рядом винил-β-дикетонатов никеля (II) и кобальта (II). В качестве винил-β-дикетонов использовали 7-октен-2,4-дион, 3-аллилпентан -2,4-дион, 2-аллил-1-фенилбутан-2,4-дион. Во всех изученных металлокомплексах винильная группа в составе лиганда не была сопряжена с хелатным циклом [1]. При этом во всех случаях скорости полимеризации ММА многократно превышали скорости процесса для стирола. Полученные полимеры содержащие в макромолекуле β-дикетонаты никеля (II) и кобальта (II), являются макроинициаторами (МИ) и хорошо растворяются в соответствующих мономерах. Растворимость МИ на основе ПММА достигала 10%.

Позже нами были синтезированы МИ на основе стирола и 5-метил-5-гексен-2,4дионата кобальта (II) (МГД-Со(II)) [2]. Все полученные таким образом МИ могут быть использованы для получения разветвленных и привитых полимеров. В последнее время синтез разветвленных полимеров вызывает большой интерес. Так, в работе [3] авторы утверждают, что разветвленным полимерам предсказывается большое будущее как материалам специального назначения, которые обладают физико-химическими свойствами значительно превосходящими линейные аналоги. Разветвленный полистирол получали на полифункциональных инициаторах – олиго-α-этоксипероксидах. Широкое исследование надмолекулярной структуры показало, что разветвленный полистирол имеет расширенную область обратимых высокоэластических деформаций (до 200°C), по сравнению с линейным полистиролом. В работе [4] для получения разветвленного полистирола использовали мономер-нитроксил. При температуре 120°С и инициировании AIBN соотношение стирол:нитроксил составляло 200:1 и 300:1. В качестве доказательства получения разветвленного полимера приводится рост молекулярной массы (м.м.) с конверсией. При росте конверсии от 10% до 80% м.м. возрастала в ~ 5 раз. В работе [5] описан синтез разветвленных полимеров ТГФ и сополимеров стирол-ТГФ с перекисными группами в боковых цепях. Гибридный сверхразветвленный полимер на основе полистирола получен авторами работы [6]. На основе полистирола и α-этоксигидропероксидов норборненовых олигоэфиров получен разветвленный полимер стирола [7]. Одним из основных параметров разветвленных полимеров является наличие надмолекулярной локальной упорядоченности в основном за счет специфических нековалентных межмолекулярных взаимодействий. Наличие полярных функциональных групп спиртовых гидроксильных, альдегидных, карбоксильных, сложноэфирных обеспечивает возникновение физической сетки. Анизотропные микродомены, образованные полярными фрагментами, которые разрушаются при нагревании и восстанавливаются при охлаждении, составляют узлы физической сетки. Наличие микрофазного разделения в образцах разветвленных полистиролов обеспечивает полимеру широкую область эластического состояния.

Полученные ранее экспериментальные данные говорят, что предложенный нами МГД-Со(II) позволяет получать разветвленные полимеры с регулируемым числом привитых цепей [8]. Об этом свидетельствует рост характеристической вязкости и м.м. полимеров с глубиной полимеризации. По сравнению с перекисными компонентами, используемыми для получения разветвленных полимеров, они образуют высокомолекулярные продукты, и процесс полимеризации идет с приемлемыми скоростями. Кроме того, МГД-Со(II) устойчив, выдерживает длительное хранение при комнатных температурах без потери активности хелатных групп.

В связи с этим мы продолжили исследования по синтезу новых МИ, позволяющих получать разветвленные полимеры. С этой целью изучена блочная полимеризация ММА, инициированная МГД-Co(II) [9]. Оказалось, что процесс полимеризации проходил с аномально низкими скоростями, а полученные при этом полимеры, являются полностью или частично сшитыми. И только при концентрации МГД-Co(II) $\leq 1\cdot 10^{-3}$ моль/л образовывались растворимые полимеры. Выяснение причин аномального поведения МГД-Co(II) при полимеризации ММА и является целью настоящей работы.

Материалы и методы исследования

Синтез винил-β-дикетона 5-метил-5-гексен-2,4-диона (МГД), проводили в соответствии с методикой [10], а кобальтовый комплекс получали по методике [11]. Радикальную полимеризацию стирола и ММА в присутствии β-дикетона (ацетилацетон, МГД) проводили в массе при температуре 80°С (для стирола) и 70°С (для ММА). Инициатор – пероксид бензоила (ПБ) с концентрацией 1·10⁻² моль/л. Кинетику полимеризации изучали гравиметрическим и дилатометрическим методами. Содержание кобальта в полимере определяли на атомно-абсорбционном спектрофотометре «Сатурн». Навеску полимера (0,05-0,10г) предварительно растворяли при нагревании на песчаной бане в 25-30 мл смеси концентрированных азотной и хлорной кислот (5:3). После этого полученный раствор разбавляли до 10 мл дистиллированной водой. Для определения использовали стандартные растворы ГСОРМ — Со производства СКТБ Физико-химического института НАНУ г. Одесса. Для исключения вероятных погрешностей, обусловленных влиянием указанных минеральных кислот (азотной и хлорной), уравнивали их содержание в анализируемых и стандартных растворах.

Результаты эксперимента и их обсуждение

Была исследована полимеризация стирола и MMA с добавлением ацетилацетона (AA). Полученные результаты представлены в табл.1. Из таблицы следует, что в растворе ацетилацетона начальная скорость полимеризации меньше, чем в блоке, и при полимеризации стирола в основном соответствует зависимости $V_{\text{пол}} \sim [M]$. При полимеризации MMA начальные скорости полимеризации мало меняются с разбавлением.

Таблица 1 Кинетические параметры полимеризации стирола и ММА в присутствии ацетилацетона. Инициатор ПБ. $C_{\rm HE}=1\cdot 10^{-2}$ моль/л. $T=80^{\circ}{\rm C}$ (для стирола). $T=70^{\circ}{\rm C}$ (для ММА)

Too Can empone 1 , o Can many							
Объемное соотношение АА:мономер	Мономер	V ₀ ·10 ⁵ моль/ (л·с)	V _{ср} ·10 ⁵ моль/ (л·с)	S _A , %	S _r , %		
1:10	стирол	21,6	18,9	10,5	10,5		
	MMA	45,3	44,8	11,2	10,5		
1:5	стирол	20,5	17,5	10,9	10,9		
	MMA	43,8	42,1	12,0	11,6		
1:1	стирол	15,4	12,7	10,8	9,8		
	MMA	42,8	40,6	10,7	10,7		
5:1	стирол	13,6	8,4	11,1	10,2		
	MMA	_	_	-	_		

где, $V_{_{0}}$ и $V_{_{cp}}$ – начальная и средняя скорость полимеризации; $S_{_{\rm J}}$, и $S_{_{\rm T}}$ – конверсия, определенная дилатометрическим и гравиметрическим методами.

В целом можно утверждать, что ацетилацетон не оказывает какого-либо специфического замедляющего действия, как на полимеризацию стирола, так и на полимеризацию ММА. Следовательно, цикл β-дикетона не является причиной замедления полимеризации. Величины конверсии, определенные дилатометрически и гравиметрически, практически совпадают как при полимеризации стирола, так и ММА. Этот факт говорит о том, что не образуются низкомолекулярные продукты, которые при переосаждении в спирте теряются. Следовательно, процессы ингибирования отсутствуют.

В табл.2 представлена полимеризация стирола и ММА с добавлением 5-метил-5-гексен-2,4-диона (МГД). В этом случае наблюдаются значительные отклонения $V_{\rm o}$ и $V_{\rm cp}$ от скоростей полимеризации в блоке. Для стирола уменьшение скорости при переходе от соотношения МГД-мономер 1:10 до 5:1 составляет 3,5 и 5,3 раза для $V_{\rm o}$ и $V_{\rm cp}$, соответственно. А для ММА эти величины равны 12,7 и 17,5 раза. Кроме того, если при полимеризации стирола различие между $S_{\rm g}$ и $S_{\rm r}$ составило 1,1 и 1,7 раза для соотношений 1:1 и 5:1, соответственно, то при полимеризации ММА эти величины были 1,3 (соотношение 1:10), а при соотношении 5:1 выделить полимер после переосаждения вообще не удалось. Оба эти факта свидетельствуют о наличии процесса ингибирования.

Таблица 2 Кинетические параметры полимеризации стирола и метилметакрилата в присутствии МГД, $C_{\rm HE}=1\cdot 10^{-2}$ моль/л. $T=80^{\circ}{\rm C}$ (для стирола); $T=70^{\circ}{\rm C}$ (для ММА)

Объемное соотношение МГД:мономер	Мономер	V ₀ ·10 ⁵ моль/ (л·с)	V _{ср} ·10 ⁵ моль/ (л·с)	S ₁ , %	S _r , %
1:10	стирол	21,6	21,6	9,5	9,0
	MMA	9,3	8,6	10,6	8,2
1.5	стирол	16,4	16,4	10,3	8,0
1:5	MMA	3,4	3,2	10,3	9,0
1.1	стирол	14,1	12,9	9,4	5,7
1:1	MMA	1,5	1,2	9,2	3,0
5.1	стирол	6,1	4,1	8,4	5,0
5:1	MMA	0,7	0,5	3,9	0
0.1	стирол	24,6	24,6	12,0	12,0
0:1	MMA	44,3	44,3	10,0	10,0

Кроме того, нами были определены начальные скорости полимеризации стирола в присутствии МГД при 70°С. Они составили: $8,3\cdot10^{-5}$ моль/($\pi\cdot c$) (соотношение 1:5), $5,1\cdot10^{-5}$ моль/($\pi\cdot c$) (1:1), $2,3\cdot10^{-5}$ моль/($\pi\cdot c$) (5:1). Сравнение этих величин со скоростями полимеризации ММА при этой же температуре (табл.2): $3,4\cdot10^{-5}$ моль/($\pi\cdot c$) (1:5), $1,5\cdot10^{-5}$ моль/($\pi\cdot c$) (1:1), $0,7\cdot10^{-5}$ моль/($\pi\cdot c$) (5:1) — показывает, что скорости полимеризации ММА в несколько раз меньше, чем стирола. А в случае инициирования ПБ полимеризация стирола идет более чем в 4 раза медленнее, чем ММА.

Таким образом, можно утверждать, что 5-метил-5-гексен-2,4-дион оказывает специфическое действие на полимеризацию ММА. Причиной ингибирующего действия МГД на полимеризацию ММА не является хелатный цикл β -дикетона, так как в растворе ацетилацетона такое ингибирование не наблюдается. Но в процессе полимеризации стирола и ММА растворитель МГД участвует как сомономер. При этом раскрытие двойной связи МГД приводит к образованию радикала, сопряженного с хелатным циклом:

Активность такого радикала будет существенно снижена. Это одна из причин ингибирования, что очевидно из общих представлений. Далее акцепторный радикал МГД взаимодействует с донорной двойной связью стирола. Стирол в системе Q-е Алфея-Прайса имеет полярный фактор e = -0.8, а для ММА e = +0.4. При

полимеризации стирола полярный фактор способствует процессу полимеризации, а при полимеризации ММА в растворе МГД, напротив, полярный фактор препятствует процессу полимеризации. Таким образом, причиной низких скоростей полимеризации ММА в растворе МГД будет низкая активность образованного из МГД радикала, его полярный фактор и возможность образования комплексов между МГД и мономером. Поэтому, пока в полимеризующейся системе есть мономер МГД, он будет обрывать растущие цепи и место обрыва не хелатный цикл, а двойная связь МГД. При получении полиметилметакрилатного МИ фрагменты МГД-Со(II) входят в цепь и в системе отсутствует мономер МГД, и тогда скорости прививки ММА на этот МИ в несколько раз больше, чем стирола [9].

Аналогичные результаты получены при полимеризации ММА и стирола, инициированной полистирольными МИ (табл.3). Таким образом, кинетические параметры полимеризации ММА на ПММА и полистирольных МИ подтверждают сделанный выше вывод.

Таблица 3 Кинетические параметры полимеризации метилметакрилата (T=70°C) и стирола* (T=85°C), инициированной полистирольными МИ. С $_{\rm MI}$ = 5 мас.%.

МИ получены при С _{мгд-Со(II)} , ·10 ³ моль/л	V ₀ ·10 ⁵ моль/(л·с)	V _{ср} ·10 ⁵ моль/(л·с)	S ₄ , %	W _{Co} , мас. %
10,0	17,2	14,0	10,5	0,14
5,0	13,5	12,0	9,9	0,09
2,5	9,6	8,4	9,9	0,03
5,0*	6,1	5,6	9,8	0,05

 $\mathcal{W}_{\mathrm{Co}}^{\Pi\Pi}$ где, $\mathcal{W}_{\mathrm{Co}}^{\Pi}$ - содержание кобальта в привитом полимере.

Второй особенностью процесса полимеризации ММА, инициированной МГД-Co(II), является образование частично или полностью сшитых полимеров при концентрациях инициатора $\leq 1\cdot 10^{-3}$ моль/л. При полимеризации стирола даже при концентрациях этого инициатора $20\cdot 10^{-3}$ моль/л образуются растворимые полимеры. Процесс частичного или полного сшивания макромолекул называют структурированием.

Структурирование – один из эффективных методов модификации полимеров. Химическое структурирование одно из наиболее распространенных. Его можно проводить с помощью пероксидов, азосоединений и органосиланами. С помощью структурирования обычно модифицируют олефины [12]. Различают сшивание полиолефинов с помощью пероксидов, азосоединений и окислительновосстановительных систем: гидропероксид + соединения металлов переменной валентности. В этих случаях процесс идет через стадию радикалообразования.

В настоящее время наиболее применяемым методом является радикальное сшивание пероксидами. В этом процессе наряду со сшиванием идет деструкция полимера, которая является нежелательной. В связи с этим для сшивания используют многокомпонентную композицию: это инициатор, антиоксидант, предотвращающий деструкцию, и ряд других компонентов [12]. Поэтому уменьшение числа

компонентов сшивающей системы, упрощение технологии процесса, улучшение механических свойств полимеров являются предметом исследований.

Металлокомплексное сшивание один из перспективных способов структурирования полимеров. В работе [13] сшивание макромолекул проводят за счет двойных связей, а источником радикалов служат β -дикетонаты Со (III), Со (II), Мп (III), Fe (II), Сг (III), Сц (II), облученные УФ-светом. Полученные полимерные пленки для трехвалентных металлов не изменяют цвет, а для двухвалентных – изменяют. Авторы считают, что это связано с образованием внешнесферных (для трехвалентных) и внутрисферных (для двухвалентных) комплексов. Очевидно, что наряду со сшиванием, обусловленным образованием σ -связей в случае металлов переменной валентности, идет образование пространственной координационной сетки с участием иона металла. Это подтверждается результатами работ [14,15]. В результате структурирования увеличивается плотность упаковки макромолекул и плотность узлов пространственной сетки полимеров, что приводит к увеличению прочности полимеров [15].

Как показано выше, применение в качестве инициатора МГД-Co(II) позволяет получать разветвленные полимеры в одну стадию. Если полимер, полученный при инициировании МГД-Co(II), выделить на небольших глубинах (до 15%), то он будет являться макроинициатором и способен прививать боковые цепи за счет других мономеров. Процесс протекает с достаточными скоростями и большой массой привитых цепей. Но при определенных условиях, при получении разветвленных и привитых полимеров возможно протекание процесса структурирования. Этот процесс наблюдается при полмеризации ММА, инициированной МГД-Co(II), и прививке метилметакрилата на полистирольную матрицу, содержащую β-дикетонатные фрагменты. Процесс структурирования может регулироваться за счет концентрации хелатных фрагментов в МИ и величиной конверсии. Таким образом, возможно получение полностью структурированных полимеров с очень большой степенью набухания.

При полимеризации ММА, инициированной МГД-Со(II), структурирование проявляется значительно интенсивнее ввиду наличия нескольких факторов, не карактерных для стирола и других β-дикетонатов. Это наличие двойных связей в ПММА, образованных за счет реакции диспропорционирования растущих радикалов. При полимеризации стирола обрыв растущих радикалов происходит только по механизму рекомбинации. Вторым фактором, характерным для ММА, является наличие карбонильных групп, которые образуют комплексы с металлами. Третий фактор – низкая активность радикалов, образованных из МГД-Со(II). Таким сопряженным радикалам не свойственно продолжать реакции роста цепи, но они легко вступают в реакции, не требующие большой энергии активации – прежде всего это реакции рекомбинации. Образование малоактивних радикалов, способных только к рекомбинации, показано для процесса окисления углеводородов в присутствии диалкилдитиокарбоматов меди [16].

Комплексообразование β-дикетонатов с радикалами описано в ряде публикаций. Наиболее изучен этот процесс для ацетилацетоната Co(II) [16]. Показано, что реакция может проходить тремя путями: взаимодействие радикала с лигандом, замещение лиганда в координационной сфере металла на радикал, а также путем переноса электрона, приводящее к чередованию реакций окисления и восстановления. Благодаря этим факторам, характерным для ММА и МГД-Co(II), при полимеризации образуется химическая и физическая сетка, которая при больших

концентрациях МГД-Co(II) приводит к образованию нерастворимых полимеров. В результате структура ПММА, полученного под действием МГД-Co(II), должна быть совершенно другой, чем у полистирола.

В сравнении с описанными в литературе радикальными сшивающими агентами, где в сшиваемую систему добавляются несколько компонентов, в предложенном МИ уже присутствуют радикалообразующие группы. Кроме того, хелатные фрагменты обладают и ингибирующим действием. Следовательно, в сшиваемую систему не надо добавлять инициатор и ингибитор и таким образом упрощается технология процесса.

Таким образом, предложенный компонент МГД-Co(II) является универсальным модификатором полимерных материалов, позволяющий получать разветвленные, привитые и структурированные полимеры по значительно упрощенной методике. При полимеризации ММА, инициированной МГД-Co(II), процес структурирования проходит одновременно с процессом полимеризации и может регулироваться концентрацией инициатора.

Список литературы

- Шевченко О.В. Буренкова Е.В., Бербат Т.И., Волошановский И.С. Зависимость реакционной способности винил-β-дикетонатов от строения металла и природы лиганда в радикальной полимеризации // Вопросы хим. и хим.технологии. 2007.-№ 1. С.89-92.
- Волошановский И.С., Шевченко О.В., Буренкова Е.В. Особенности радикальной полимеризации стирола в присутствии полифункционального компонента процесса метакрилоилацетоната кобальта (II) // Полімерний журнал. 2011. Т.33, №1. С.76-81.
- 3. *Антонова Л.А., Губанов Э.Ф., Шугарова Н.Н.* Разветвленные полистиролы, полученные на полифункциональных радикальных инициаторах // Тезисы докладов XVII Менделеевского съезда по общей и прикладной химии. Казань. 2003. С.39.
- 4. *Tao Yuefei, He Junpo, Wang Zhongmin.* Synthesis of branched polystyrene and poly(styrene-b-4-methoxy-styrene) by nitroxyl stable radical controlled polymerization // Makromolecules. − 2001. − V.34, №14. − P.4742-4748
- Baki Hazer. Synthesis of styrene tetrahydrofuran branched block copolymers // Eur. Polym. J. 1991. V.27, №9. – P.975-978.
- 6. *Семчиков Ю.Д., Зайцев С.Д., Каткова М.А.* Гибридный сверхразветвленный полимер на основе полистирола и трис(пентафторфенил)германа // Высокомол. соед. 2001. Т.43A, № 9. С.1464-1471.
- Шугурова Н.Н., Антонова Л.А., Григорьев Е.И. Микрофазное разделение в разветвленных полимерах на основе стирола и нонборненового олигоэфира // Тез. докл. 8 международной конференции по химии и физико-химии олигомеров «Олигомеры-2002». – Москва-Черноголовка. 2002. – С.236.
- Шевченко О.В., Буренкова Е.В., Волошановский И.С. Новые макроинициаторы с β-дикетонатными фрагментами в привитой полимеризации метилметакрилата // Высокомол. соединения. Сер.А. -2006.- Т.48, № 9,- С.1573-1578.
- 9. Волошановский И.С., Шевченко О.В., Буренкова Е.В. Особенности радикальной полимеризации метилметакрилата, инициированной 5-метил-5-генсен-2,4-дионатом кобальта (II) // Вісник Одеськ. ун-ту. Т.17. Вип.2. Хімія.- 2012. —С.18-25
- Teyssie Ph., Smets S. Synthesis and polymerization of methacroylacetone // Makromol. Chem. 1958. V.26, N 3. – P.245-251.
- 11. Волошановский И.С., Шевченко О.В., Бережницкая А.С., Краснова Е.А. Комплексы меди (II), никеля (II), кобальта (II) с непредельными β-дикетонатами // Укр. хим. журн. -2001. Т.67, № 5. С.5-10.
- 12. *Коновал И.В., Коноваленко Н.Г., Иванчев С.С.* Пространственное структурирование полиолефинов химическими методами // Успехи химии. 1988. Т.57, №1. С.134-148.
- Низельский Ю.М., Кравчук В.А., Кривдик О.М. Зшивання полівінілметоксиметакриламіду в присутності β-дикетонатів металів // Доповіді НАН України. – 1997. – №9. – С.142-146.

- Довлетбаева И.М., Рахматуллина А.П., Кирпичников П.А. Особенности формирования узлов пространственной сетки 3d-металлокоординированных полиуретанов // Высокомол. соед. – 1998. – Т.40, № 4. – С.667-671.
- 15. Довлетбаева И.М., Довлетбаев Р.С., Былинкин Р.А. Металлокомплексная модификация гетероцепных полимеров и их специфические свойства // Тез. докл. 8 международной конференции по химии и физико-химии олигомеров «Олигомеры-2002». Москва. 2002. С.182.
- Низельский Ю.Н. Каталитические свойства β-дикетонатов металлов. Киев: Наукова думка, 1983. –
 127 с

Стаття надійшла до редакції 12.02.2013

О. В. Шевченко, І. С. Волошановський, К. В. Буренкова

Одеський національний університет ім. І.І. Мечникова кафедра органічної хімії, вул. Дворянська, 2, Одеса, 65082, Україна e-mail: volis15@ukr.net

ПРИЧИНИ КІНЕТИЧНИХ ТА СТРУКТУРНИХ ОСОБЛИВОСТЕЙ ПОЛІМЕРИЗАЦІЇ МЕТИЛМЕТАКРИЛАТУ, ЯКУ ІНІЦІЮВАЛИ МЕТАКРИЛОЇЛАЦЕТОНАТОМ КОБАЛЬТУ (II)

Резюме

Розглядаються причини кінетичних та структурних особливостей полімеризації метилметакрилату, яку ініціювали 5-метил-5-гексен-2,4-дионатом кобальту (II). Показано, що аномально низькі швидкості полімеризації та структурування полімерів пов'язано з утворенням спряжених радикалів металохелату і полярним фактором мономера.

Ключевые слова: вініл-β-дикетонати, радикальна полімеризація, поліметилметакрилат, структурування.

O. V. Shevchenko, I. S. Voloshanovsky, K. V. Burenkova

I.I. Mechnikov Odessa National University, Organic Chemistry Department, Dvorianskaya St., 2, Odessa, 65082, Ukraine e-mail: volis15@ukr.net

THE REASONS OF KINETIC AND STRUCTURAL FEATURES OF METHYL METHACRYLATE POLYMERIZATION, INITIATED BY COBALT (II) METHACRYLOYLACETONATE

Summary

The reasons of kinetic and structural features of methyl methacrylate polymerization, initiated by cobalt (II) 5- methyl-5-hexene-2,4-dionate are considered. It is shown that abnormally low rates of polymerization and the formation of cross-linked polymers are connected with the formation of conjugated metal chelate radicals and with the polar factor of monomer.

Key words: vinyl- β -diketonates, radical polymerization, polymethyl methacrylate, cross-linked polymers