УДК 546.282 / 546.289:535.35

В. Ф. Зінченко¹, І. Р. Магунов¹, А. В. Бабенко¹, О. В. Мозкова², О. П. Іваненко³, С. В. Кулешов³, В. В. Менчук⁴, П. Г. Дога¹

¹Фізико-хімічний інститут ім. О. В. Богатського НАН України, Люстдорфська дорога, 86, м. Одеса, 65080, Україна; E-mail: vfzinchenko@ukr.net
 ²Казенне підприємство спеціального приладобудування «Арсенал», вул. Князів Острозьких, 8, м. Київ, 02010, Україна; E-mail: olgamozk@ukr.net
 ³Інститут загальної та неорганічної хімії ім. В. І. Вернадського НАН України, пр. Академіка Палладіна, 32/34, м. Київ, 03142, Україна, sergiykuleshov@gmail.com
 ⁴Одеський національний університет імені І. І. Мечникова, вул. Дворянська, 2, м. Одеса, 65026, Україна

ВПЛИВ В203 НА ВЗАЄМОДІЮ У СИСТЕМІ SiO-GeO2

Досліджено вплив B_2O_3 на характер хімічної взаємодії при 800 °С між монооксидом Силіцію та діоксидом Германію методами РФА та ІЧ спектроскопії пропускання. Дифрактограми зразків системи SiO–GeO₂– B_2O_3 відповідають фазі SiO₂ гексагональної модифікації та GeO₂ різних модифікацій, а також кристалічній фазі B_2O_3 . Розширення піків та наявність виразного гало вказують на наноструктурування та склоутворення. На відміну від системи SiO–GeO₂, у системі з добавкою B_2O_3 утворення нанокристалічного германію не спостерігається. Характер ІЧ спектрів пропускання суттєво залежить від вмісту B_2O_3 , що вказує на відмінність процесів взаємодії, та запропоновано їх схему. Випробування методом термічного випаровування у вакуумі одного зі зразків із стехіометричним співвідношенням компонентів виявив можливість утворення достатньо тривкого покриття з показником заломлення 1.93 при довжині хвилі 1000 нм.

Ключові слова: монооксид Силіцію, діоксид Германію, взаємодія, структура.

вступ

Крім загальновідомого діоксиду Силіцію, існує й інша оксидна сполука – монооксид Силіцію, SiO [1, 2]. У твердому стані SiO не є сполукою у класичному вигляді (як це має місце у газуватому стані), а як своєрідний нанокомпозит, що складається з аморфного силіцію та склоподібного діоксиду Силіцію. Цю речовину отримують гартуванням з газової фази у вигляді темно-коричневого рентгеноаморфного порошку. Монооксид Силіцію досить широко застосовують в оптиці для нанесення покриттів різного функціонального призначення [3, 4]. Головним недоліком SiO як плівкоутворюючого матеріалу є його доволі висока хімічна активність, і тому оптичні елементи, вироблені із застосуванням SiO, є не вельми стійкими у часі. Нещодавно [5, 6] запропоновано застосовувати замість SiO монооксид Германію завдяки значно вищій тривкості покриттів з нього. Так, оптичні деталі, що містять покриття з GeO, зберігаються без найменших ушкоджень протягом тривалого часу (6–7 років і більше) завдяки високій адгезії GeO до германієвих підкладок через їхню хімічну спорідненість один до одного.

Проте монооксид Германію, на відміну від SiO, є достатньо рідкісною речовиною. Оскільки і SiO, і GeO₂ є досить поширеними у продажу, раніше [7] нами здійснено спробу проведення реакції між ними з одержання GeO за схемою:

$$\operatorname{SiO} + \operatorname{GeO}_2 \xrightarrow{\mathbf{1}, \operatorname{Ar}} \operatorname{SiO}_2 + \operatorname{GeO}_2^{\uparrow}.$$
 (1)

DOI: https://doi.org/10.18524/2304-0947.2023.3(86).297816

[©] В. Ф. Зінченко, Г. Р. Магунов, А. В. Бабенко, О. В. Мозкова, О. П. Іваненко, С. В. Кулешов, В. В. Менчук, П. Г. Дога, 2023

Проте, через утворення Ge та твердого розчину SiO₂–GeO₂ як проміжних продуктів, реакція (1) відбувається при вельми високій температурі (понад 1000 °C). Крім того, при термічному випаровуванні у вакуумі спостерігається викид тонкодисперсних частинок SiO з випарника через їх електризацію, до якої схильна сполука. Слід зазначити, що через високу леткість індивідуального GeO теж не вдається отримати тривке покриття з нього. Добавка B₂O₃ до GeO₂ знижує швидкість випаровування й різко покращує експлуатаційні властивості отриманих плівок [5, 8]. Це наштовхнуло на думку, що добавка B₂O₃ до зразків системи SiO–GeO₂ може зарадити проблемі. Додавання B₂O₃, за даними [9], сприяє перебігу реакції кристалізації у системі TiO₂–ZrO₂.

Отже, метою роботи є з'ясування впливу різних факторів, головним чином, вмісту добавки B₂O₃ на характер взаємодії і системі та властивості одержуваних (при можливості) покриттів.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА

Як вихідні речовини нами застосовано наступні: монооксид Силіцію кваліфікації х.ч., виробництва заводу РЕАХІМ (м. Донецьк), діоксид Германію кваліфікації ос.ч., виробництва заводу «Красний хімік» (РФ); як джерело B_2O_3 застосовували боратну кислоту, H_3BO_3 , лікарський препарат наявний у широкому продажу. Термообробку зразків системи SiO–GeO₂– B_2O_3 у молярному співвідношенні (1:1:0.5) і (1:1:1) проводили при 800 °С у реакторі з кварцового скла, який заповнювали очищеним аргоном і вміщували у трубчасту горизонтальну піч RHTC80–450 (виробництва Nabertherm, Німеччина) в середовищі додатково очищеного аргону (система очищення – виробництва Valco Instruments Co Inc., США). Нагрівання шихти проводили у розробленому режимі з кінцевою точкою 800 °С; про закінчення процесу розкладання кислоти судили за відсутністю конденсату у холодній частині реактору.

Для ідентифікації фазового складу системи SiO–GeO₂–B₂O₃ застосовували метод рентгенівського фазового аналізу (РФА). РФА продуктів взаємодії виконували на дифрактометрі ДРОН-3М з Сu-К*α*-випромінюванням ($\lambda = 1.5406$ Å) методом порошку. Зйомку рентгенограм здійснювали з фокусуванням за схемою Брегта-Брентано в інтервалі кутів 10–80° з кроком 0.5° та експозицією 1 с. Сила струму анода рентгенівської трубки становить 20 мА, напруга – 30 кВ, розміри щілин Солера – 002/12/025 мм. Похибка приладу становила 0.01%. Для ідентифікації фазового складу продуктів синтезу обробку дифрактограм проводили з використанням комп'ютерного забезпечення «Match! Crystal Impact ver. 3.3» [10] із базами даних «SCDD PDF-2» та «COD (Crystssllography Open Database)».

Зважаючи на здатність B_2O_3 до склування, додаткову ідентифікацію зразків проводили методом IЧ спектроскопії пропускання. Спектри зразків, запресованих у матрицю CsI (виробництво Інституту монокристалів НАН України, м. Харків) за стандартною методикою з можливим співвідношенням зразок-матриця як 1:20 знімали за допомогою спектрометра із фур'є-перетворенням Frontier (виробництва фірми Perkin-Elmer (США)). Діапазон вимірювань хвильових чисел лежав у межах 200–4000 см⁻¹. Про наявність наночасток у матриці судили за проявом періодичної осциляції на певних ділянках IЧ спектрів пропускання.

Зразки матеріалів після дослідження випробували методом термічного випаровування у вакуумі на установці ВУ-1А. Використовували випарники у формі човника, виготовлені з молібденової фольги. Оптичні властивості покриттів вимірювали на приладі Vertex.

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Дифрактограми зразків системи SiO-GeO₂-B₂O₃ представлено на рис. 1. На них чітко помітно піки, що майже цілком збігаються між собою та відповідають фазам SiO, гексагональної сингонії (кварц), а також GeO, різних модифікацій [11]. В області поблизу 20÷28° з'являється у випадку зразка 1:1:0.5 і посилюється для зразка складу 1:1:1 пік, що нібито відноситься до В₂О₂. Усі піки на дифрактограмах є суттєво розширені, особливо для другого зі згадуваних зразків. Крім того, на них в області малих значень кутів Брегга, 20 (15-30°) помітно наявність гало, що відображає рентгеноаморфну компоненту. Її природу не вдалося розкрити, хоча можна висунути передбачення про утворення стекол на основі компонентів системи, зокрема, SiO₂, B₂O₃, тощо. Причиною ж розширення піків можна вважати утворення наноструктур як на основі SiO2, так і GeO2. Дуже приблизний результат за методом Рітвельда щодо співвідношення фаз є таким: GeO₂ (тетрагон.) – 14%, GeO₂ (гексагон.) – 4%, SiO₂–82% (це стосується першого зі зразків). Одержано наступні кристалографічні параметри фаз: GeO₂, тетрагональний (ID – 2101851, просторова група *P42/mnm*, кристалографічні параметри: *a* = 4.40656(5) Å, *c* = 2.86186(3) Å); GeO., гексагональний (ID - 2300365, просторова група P3121, кристалографічні

Рис. 1. Ділянки дифрактограм системи SiO–GeO₂–B₂O₃: а – співвідношення 1:1:0.5 (у вставці – розтягнута ділянка дифрактограми у діапазоні малих кутів Брегга); б – співвідношення 1:1:1.

Fig. 1. Patterns of diffractograms of the SiO–GeO₂–B₂O₃ system: a – ratio 1:1:0.5 (in the inset – a stretched section of the diffractogram in the range of small Bragg angles); b – 1:1:1 ratio

параметри: a = 4.9890(3) Å, c = 5.6527(3) Å, $\gamma = 120^{\circ}$) та SiO₂, тетрагональний (ID – 9001578, просторова група *P41212*, кристалографічні параметри: a = 4.9717 Å, c = 6.9223 Å) [12]. Похибка розрахунків не перевищувала 2.5%. Наявність гало від аморфної компоненти сильно спотворює дані, і тому строго встановити вміст фаз не видається можливим. Цьому також заважає співпадіння положень і інтенсивності піків на дифрактограмах SiO₂ та GeO₂ різних модифікацій. Таким чином, дані рентгенівського фазового аналізу свідчать на користь перебігу певних реакцій у системі SiO–GeO₂–B₂O₃. Проте, на відміну від системи SiO–GeO₂ (без добавки B₂O₃), у даному випадку зазначений метод не підтверджує утворення нанодисперсного германію. Отже, у системі SiO–GeO₂–B₂O₃ взаємодія відбувається у одну стадію з утворенням GeO як леткого продукту. Проте, не можна виключати можливості взаємодії GeO з SiO₂ з утворенням доволі міцної сполуки типу GeSiO₃, що утруднюватиме процес термічного випаровування у вакуумі та одержання тонкоплівкових покриттів.

Вивчено вплив добавки B_2O_3 на взаємодію між SiO та GeO₂ методами IU спектроскопії пропускання після термообробки при 800 °С. Положення смуг поглинання у IU спектрах представлено на рис. 2 та табл. 1. Серед характерних смуг, викликаних валентними коливаннями зв'язків Si–O, слід вказати таку з $\tilde{v} = 1080 \div 1090 \text{ см}^{-1}$, яку виявлено у SiO та системах SiO–GeO₂ (механічна суміш (шихта) та прожарений зразок). Значно більшу кількість смуг як результату валентних та деформаційних коливань зв'язків Ge–O представлено у IU спектрах як системи SiO–GeO₂, що не містять B_2O_3 , так і борвмісних. У той же час близькі за розташуванням смуги при 880–885 см⁻¹, скоріш за усе, відповідають валентним коливанням зв'язків B–O (системи, що містять B_2O_3). Цікаво відзначити, що смуга

Рис. 2. IЧ спектри пропускання системи SiO–GeO₂–B₂O₃ у діапазонах 4000–200 (а) та 1600–200 (б) см⁻¹: 1 – співвідношення 1:1:0.5; 2 – співвідношення 1:1:1

Fig. 2. IR transmission spectra of the SiO–GeO₂–B₂O₃ system in the ranges of 4000–200 (a) and 1600–200 (b) cm⁻¹: 1 – ratio 1:1:0.5; 2 – ratio 1:1:1

з максимумом при 960–965 см⁻¹ є наявною у GeO₂ та шихті, а також в одній із систем з B₂O₃. Характерні для GeO₂ смуги коливань (деформаційних, скоріш за усе) зв'язків Ge–O у діапазоні 590–520 см⁻¹ виявлено (цілком або частково) у всіх системах. Натомість смуги, що відповідають однозначно валентним (біля 1200 см⁻¹) та деформаційним (640–650 см⁻¹) коливанням зв'язків В–O наявні лише у системах, що містять B₂O₃. Взагалі, за своїм виглядом, IЧ спектри пропускання систем 1:1:0.5 та 1:1:1 суттєво різняться між собою, а разом – від систем, що не містять B₂O₃ взагалі. Це є вказівкою на відмінність процесів, що відбуваються при високотемпературній обробці систем. Так, у системі, що містить лише GeO₂ та SiO (без B₂O₃), як було встановлено раніше [7], взаємодія відбувається у 2 стадії:

$$2\text{SiO} + 2\text{GeO}_2 \xrightarrow{\mathbf{T}_1, \text{ Ar}} 2\text{SiO}_2 + \text{Ge} + \underline{\text{GeO}}_2, \qquad (2)$$

$$Ge + GeO_2 \xrightarrow{T_2, Ar} 2GeO\uparrow, \exists T_1 < T_2.$$
(3)

В кінцевому результаті утворюється газуватий GeO та твердий розчин SiO₂-GeO₂.

Таблиця 1

Положення смуг поглинання у IЧ діапазоні спектру зразків системи SiO–GeO,–B,O,

Table 1

Position	of absorption	bands in the	IR range of	of the spectrum
	of samples of	f the SiO_Ge	O - B O sy	vstem

Зразок, молярне співвідношення	ѷ , см⁻¹
SiO	3462 сер. 2931 д.сл. 2854 д.сл. 2553 сл. 1083 д.сл. 1048 пл. 1019 пл. 798 сер. 663 сл. 631 д.сл. 563 сл. 460 с. 283 сл. 223 сл.
GeO ₂	961 сл. 875 с. 668 сл. 586 сер. 552 сер. 517 сер. 333 сер. 251 сер.
SiO–GeO ₂ –B ₂ O ₃ (1:1:0.5), 800 °C, Ar	3690 сл. 3207 сер. 2273 д.сл. 1447 сер. 1198 сл. 1035 сл. 881 д.сл. 739 сл. 645 сл. 550 сл. 432 д.сл. 269 сл.
SiO–GeO ₂ –B ₂ O ₃ (1:1:1), 800 °C, Ar	3702 сл. 3214 с. 2264 сл. 1601 д.с. 1459 с. 1198 сер. 964 д.сл. 884 сер. 813 сл. 649 сл. 585 сл. 549 сл. 515 сл. 412 д.сл. 330 сер. 249 сер. 204 сер.

Примітка: д.с. – дуже сильна, с. – сильна, сер. – середньої інтенсивності, сл. – слабка, д.сл. – дуже слабка, пл. – плече.

Що стосується впливу B_2O_3 на перебіг процесів взаємодії між SiO та GeO₂, можна передбачити щось на кшталт каталізу за участі B_2O_3 .

Так, у системі SiO–GeO₂–B₂O₃ (зі співвідношенням 1:1:0.5) можна очікувати утворення проміжної сполуки Ge₃(BO₃)₂ за схемою:

$$3\text{SiO} + 3\text{GeO}_2 + \frac{3}{2}\text{B}_2\text{O}_3 \xrightarrow{\text{T}_1, \text{ Ar}} 3\text{SiO}_2 + \text{Ge}_3(\text{BO}_3)_2 + \frac{1}{2}\text{B}_2\text{O}_3$$
 (4)

й далі:

$$\operatorname{Ge}_{3}(\operatorname{BO}_{3})_{2} \xrightarrow{\operatorname{T}_{2}, \operatorname{Ar}} 3\operatorname{GeO}\uparrow + \operatorname{B}_{2}\operatorname{O}_{3}, \operatorname{ge}\operatorname{T}_{2} > \operatorname{T}_{1}.$$

$$(5)$$

Судячи зі значно вищої інтенсивності смуг в ІЧ діапазоні спектру для системи SiO₂–GeO₂–B₂O₃ (співвідношення 1:1:1), можна було очікувати на утворення іншої, крім орто- форми, боратної сполуки за схемою:

$$\operatorname{SiO} + \operatorname{GeO}_2 + \operatorname{B}_2\operatorname{O}_3 \xrightarrow{\operatorname{T}_1, \operatorname{Ar}} \operatorname{SiO}_2 + \operatorname{GeB}_2\operatorname{O}_4.$$
(6)

З підвищенням температури остання має розкладатися за схемою:

$$\operatorname{GeB}_2O_4 \xrightarrow{T_2, \operatorname{Ar}} \operatorname{GeO}\uparrow + \operatorname{B}_2O_3.$$
 (7)

Залишки B_2O_3 та SiO₂ в обох системах можуть утворювати боросилікатне скло або суміш стекол з різним вмістом компонентів [13]. Очевидно, через більшу міцність метаборату Германію (II) порівняно з ортоборатом, температура термообробки у другому випадку на стадії 2 має бути дещо вищою для перебігу процесу розкладання.

Слід зазначити, що реакції між монооксидом Силіцію та діоксидом Германію мають неабияку перспективу практичного застосування. Так, реакція за рівнянням (3), яка, до речі, є цілком можливою за термодинамічними критеріями, має можливість бути застосованою завдяки утворенню леткої сполуки – GeO, що утворює вельми тривке покриття.

Цікавим також виявилися закономірності зміни ступеня стабілізації валентних станів у сполуках різного складу, що є важливим для обгрунтування потреби

Рис. 3. Спектри пропускання (1, 2) та відбиття (3) тонких плівок, системи SiO–GeO₂–B₂O₃ зі співвідношенням 1:1:1 на підкладках:1 – з кварцу; 2, 3 – зі скла К-8

Fig. 3. Transmission (1, 2) and reflection (3) spectra of thin films of the SiO–GeO₂–B₂O₃ system with a ratio of 1:1:1 on substrates: 1 – from quartz; 2, 3 – from K-8 glass

у складнооксидних плівкоутворюючих матеріалах. Є сподівання на те, що подальші експериментальні дослідження підтвердять проведене прогнозування перспективності цього класу сполук.

Зразки системи SiO–GeO₂–B₂O₃ випробувано методом термічного випаровування (резистивний варіант) у вакуумі. Покриття наносили на плоско-паралельні підкладки з кварцу та клиноподібні зі скла К-8. Сила струму через випарники становила 120–130 A (у випадку зразка 1:1:1) та 140 A (у випадку зразка 1:1:0.5). Тривалість нанесення покриття з першого зразка становить 20 хв., з другого ~25 хв. Молібденовий випарник перегорів в усіх випадках за оптичної товщини 750 мкм. За даними з кривої відбиття від клиноподібної пластини, значення показника заломлення покриття становить 1.93 при довжині хвилі 1000 нм. Шар у покритті є неоднорідним за показникам заломлення й знижується за товщиною 10%. Покриття на склі К-8 є не вельми тривким, і витримало тест на стирання до 2000 обертів; натомість, покриття, нанесене на кварцову підкладку, витримало більш ніж 30000 обертів. Через наявність подряпини у покритті на склі К-8, його прозорість є дещо нижчою, ніж у покриття з кварцу (Рис. 3).

Через незначну товщину покриття, інтерференційні спектри на обох підкладках не є виразними; дещо краще це проявляється на кривій відбиття. Що стосується покриттів, нанесених зі зразків складу 1:1:0.5, усі покриття виявилися вельми нетривкими й «затріщали» через низьку адгезію до підкладок.

висновки:

Методами РФА та IЧ спектроскопії пропускання встановлено якісний склад системи SiO–GeO₂–B₂O₃ після термічної обробки, який вказує на перебіг реакції окиснення-відновлення без утворення Германію як проміжного продукту. Випробування синтезованих матеріалів шляхом термічного випаровування у вакуумі свідчать про необхідність подальшої оптимізації складу та умов синтезу, причому за основу слід брати зразок зі стехіометричним співвідношенням компонентів.

СПИСОК ЛІТЕРАТУРИ

- 1. Некрасов Б. В. Основы общей химии. В 2 т. Т. 1. Москва: Химия, 1973.-656 с.
- Самсонов Г.В., Борисова А.Л., Жидкова Т.Г. Физико-химические свойства окислов. Справочник. Под ред. Г.В. Самсонова. – Москва: Металлургия.– 1978, 472 с.
- Окатов М.А., Антонов Э.А., Байгожин А. Справочник технолога-оптика.; Под ред. М.А. Окатова. 2-е изд., перераб. и доп. – Санкт-Петербург: Политехника.– 2004, 679 с.
- Абильсиитов Г.А., Гонтарь В.Г., Колпаков А.А., Новицкий Л.А. Технологические лазеры: Справочник: В 2 т. Т. 2. Под общ. ред. Г.А. Абильсиитова. – М.: Машиностроение.– 1991, 544 с.
- Зінченко В.Ф., Соболь В.П., Магунов І.Р., Мозгова О.В. Монооксид германію перспективний матеріал інтерференційної оптики інфрачервоного діапазону спектру. // Вопросы химии и химической технологии. – 2018. – № 6. – С. 29–33.
- Зінченко В.Ф., Магунов І.Р., Мозкова О.В., Горштейн Б.А., Соболь В.П., Садковська Л.В. Порівняльна характеристика покриттів з SiO та GeO на лейкосапфірі. // Вісник ОНУ. Хімія.– 2021. – Т. 26, №. 2 (78). – С. 14–21 https://doi.org/10.18524/2304–0947.2021.2(78).233815
- 7. Зинченко В.Ф., Нечипоренко А.В., Магунов И.Р., Стоянова И.В., Садковская Л.В., Пшеничный Р.Н. Исследование взаимодействия в системе SiO-GeO₂ спектроскопическими методами. // Укр. хим. журнал.–2016. Т. 82, № 11. С. 52–58.

- Zinchenko V.F., Magunov I.R., Mozgova O.V., Nechyporenko G.V., Stoianova I.V. Interaction studying in system GeO-B₂O₃ by spectroscopic methods. // Physics and chemistry of solid state. – 2018. – Vol. 19, N2. – P. 163–170. https://doi.org/10.15330/pcss.19.2.163–170
- Mao D., Lu G. The effect of B₂O₃ addition on the crystallization of amorphous TiO₂–ZrO₂ mixed oxide. // J. Solid State Chem.– 2007. – Vol. 180, N2. – P. 484–488. https://doi.org/10.1016/j.jssc.2006.11.009
- 10. *Putz H.* Match! Phase identification from power diffraction. Version 3: manual. Bonn: Crystal impact, 2020. 143 p.
- McMurdie H.F., Morris M. C., Evans E. H., Paretzkin B., Wong-Ng W., Ettlinger L. Standard X-Ray diffraction powder patterns from the JCPDS research associateship. // Powder Diffraction.– 1986. – Vol. 1, N2. – P. 64–77. https://doi.org/10.1017/S0885715600011593
- 12. Crystallography Open Database. http://www.crystallography.net
- Диаграммы состояния систем тугоплавких оксидов. Справочник. № . 5. Двойные системы. Ч. 1. Отв. ред. Ф. Я. Галахов. – Ленинград: Наука, 1985. 284 с.

Стаття надійшла до редакції 09.09.2023

V. F. Zinchenko¹, I. R. Magunov¹, A. V. Babenko¹, O. V. Mozkova², O. P. Ivanenko³, S. V. Kuleshov³, V. V. Menchuk⁴, P. H. Doha¹

¹O.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine,

86 Liustdorfska Rd, Odesa, 65080, Ukraine; E-mail: vfzinchenko@ukr.net

²State Enterprise for Special Instrument Making «Arsenal», 8 Kniaziv Ostrozkykh St, Kyiv, 02010, Ukraine; E-mail: olgamozk@ukr.net

³V. I. Vernadsky Institute of General and Inorganic Chemistry of National Academy of Sciences of Ukraine, 32/34 Akademika Palladin Av, 03142, Kyiv, Ukraine, E-mail: sergiykuleshov@gmail.com

⁴Odesa I. I. Mechnikov National University, 2 Dvorianska St, Odesa, 65026, Ukraine

INFLUENCE OF B₂O₃ ON THE INTERACTION IN THE SiO–GeO₂ SYSTEM

The influence of the B₂O₂ additive on the nature of the interaction in the SiO-GeO₂ system was investigated by X-ray diffraction and IR transmission spectroscopy. The nature of the diffractograms of the SiO-GeO2-B2O3 system with a composition of 1:1:0.5 and 1:1:1 corresponds to the presence of SiO, phases of hexagonal modification (quartz) and GeO. of various modifications, as well as, possibly, a crystalline B₂O₂ phase. The exact value of the content of the reaction products and initial components could not be determined due to the significant content of the X-ray amorphous component of unknown composition. The broadening of the diffraction peaks and the presence of a distinct halo testify to the benefit of the processes of nanostructuring and glass formation. However, the absence of elemental germanium in the SiO-GeO2-B2O3 system, in contrast to the SiO-GeO2 system, was clearly established. The nature of the IR transmission spectra of samples with different content of B₂O₂ additive differ significantly from each other. Thus, the IR transmission spectra of the sample with a composition of 1:1:0.5 contain weak absorption bands due to the oscillations of the B-O bonds; instead, they reveal periodic oscillations characteristic of nanostructured systems. In the spectra of the sample with a composition of 1:1:1, the absorption bands due to the oscillations of the B-O bonds are very distinct, but there are no oscillations. Therefore, the addition of B₂O₂ probably accelerates the formation of Germanium monoxide, which in turn reacts with the B₂O₂ additive and possibly with SiO₂ as one of the reaction products.

Testing of samples of the SiO–GeO₂–B₂O₃ system by the method of thermal evaporation in a vacuum revealed the advantages of the sample with a composition of 1:1:1 in the ability to form a strong and durable coating. It was possible to determine the refractive index for it, which is 1.93 at a wavelength of 1000 nm. Instead, the coating obtained from the 1:1:0.5 composition sample turned out to be unstable. A conclusion was made about the need for

further optimization of the composition and synthesis conditions to obtain materials with the required parameters.

Keywords: Silicon monoxide, Germanium dioxide, interaction, structure

REFERENCES

- 1. Nekrasov B.V. Osnovy obshchei khimii. v 2 t. Vol. 1. Moscow, Khimiya, 1973, 656 p. (in Russian).
- Samsonov H.V., Borisova A.L., Zhidkova T.H. Fiziko-khimicheskie svoistva okislov. Spravochnik. Pod red. H.V. Samsonova. Moscow, Metallurhiya, 1978, 472 p. (in Russian).
- Okatov M.A., Antonov E.A., Baihozhin A. Spravochnik tekhnoloha-optika.; Pod red. M.A. Okatova. 2-e izd., pererab. i dop. – Saint Petersburg, Politekhnika, 2004, 679 p. (in Russian).
- Abilsiitov H.A., Hontar V.H., Kolpakov A.A., Novitskiy L.A. *Tekhnolohicheskie lazery: Spravochnik*: v 2 t. Vol. 2. Pod obshch. red. H.A. Abilsiitova. Moscow, Mashinostroenie, 1991, 544 p. (*in Russian*)
- Zinchenko V.F., Sobol V.P., Mahunov I.R., Mozghova O.V. Monooksyd germaniiu perspektyvnyi material interferentsiinoi optyky infrachervonoho diapazonu spektru. Voprosy khimii i khimicheskoi tekhnolohii, 2018, no 6, pp. 29–33. (in Ukrainian).
- Zinchenko V.F., Mahunov I.R., Mozkova O.V., Horshtein B.A., Sobol V.P., Sadkovska L.V. Porivnialna kharakterystyka pokryttiv z SiO ta GeO na leikosapfiri. Visn. Odes. nac. univ., Him, 2021, Vol. 26, no 2 (78). pp. 14–21 https://doi.org/10.18524/2304–0947.2021.2(78).233815 (in Ukrainian).
- Zinchenko V.F., Nechyporenko A.V., Mahunov Y.R., Stoianova Y.V., Sadkovskaia L.V., Pshenichnyi R.N. *Issledovanie vzaimodeistviia v sisteme SiO-GeO₂ spektroskopicheskimi metodami*. Ukr. khim. zhurnal, 2016, Vol. 82, no 11, pp. 52–58. (*in Russian*).
- Zinchenko V.F., Magunov I.R., Mozgova O.V., Nechyporenko G.V., Stoianova I.V. Interaction studying in system GeO-B₂O₃ by spectroscopic methods. Physics and chemistry of solid state, 2018, Vol. 19, no 2. pp. 163–170. https://doi.org/10.15330/pcss.19.2.163–170
- Mao D., Lu G. The effect of B₂O₃ addition on the crystallization of amorphous TiO₂–ZrO₂ mixed oxide. J. Solid State Chem, 2007, Vol. 180, no 2, pp. 484–488. https://doi.org/10.1016/j.jssc.2006.11.009
- 10. Putz H. Match! Phase identification from power diffraction. Version 3: manual. Bonn, Crystal impact, 2020, 143 p.
- McMurdie H.F., Morris M.C., Evans E. H., Paretzkin B., Wong-Ng W., Ettlinger L. Standard X-Ray diffraction powder patterns from the JCPDS research associateship. Powder Diffraction, 1986, Vol. 1, no 2, pp. 64–77. https://doi.org/10.1017/S0885715600011593
- 12. Crystallography Open Database. http://www.crystallography.net
- 13. Diahrammy sostoianiia tuhoplavkikh oksidov. Spravochnik. no 5. Dvoinye sistemy. Ch. 1. Otv. red. F. Ia. Galakhov L., Nauka, 1985, 284 p. (in Russian).