УДК 541.123.3

Ю. В. Юрченко, О. А. Корнієнко, С. Ф. Корічев, С. В. Юшкевич

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, відділ функціональної кераміки на основі рідкісних земель, вул. Кржижановського, 3, м. Київ, 03680, Україна,

ІЗОТЕРМІЧНИЙ ПЕРЕРІЗ ДІАГРАМИ СТАНУ ПОТРІЙНОЇ СИСТЕМИ ZrO,–HfO,–Eu,O, ЗА ТЕМПЕРАТУРИ 1100 °C

В даній роботі представлено результати дослідження фазових рівноваг в системі на основі діоксидів цирконію та гафнію і оксиду європію. Дослідження проводили за температури 1100 °C. За отриманими результатами побудовано ізотермічний переріз при вказаній температурі. Встановлено, що в потрійній системі ZrO_2 – HfO_2 – Eu_2O_3 за температури 1100 °C утворюються тверді розчини на основі: моноклінної (М, просторова група $P2_1/C$) модифікації HfO_2 та тетрагональної (Т, просторова група $P4_2/mc$) модифікації ZrO_2 , кубічні тверді розчини зі структурою типу флюориту ZrO_2 (HfO_2) (F, просторова група Fm3m), кубічні тверді розчини С-типу оксидів рідкісноземельних елементів (просторова група Ia-3), а також упорядкована фаза зі структурою типу пірохлору $Eu_2Zr_2O_7$ ($Eu_2Hf_2O_7$) (Ру, просторова група Fd-3m). Визначено границі фазових полів та параметри елементарних комірок утворених фаз. Утворення нових фаз у системі ZrO_2 – HfO_2 – Eu_2O_3 за температури 1100 °C не спостерігалося.

Ключові слова: фазові рівноваги, діаграма стану, тверді розчини, періоди кристалічних граток, функціональна кераміка.

вступ

Матеріали на основі діоксидів цирконію та гафнію є багатообіцяючими матеріалами завдяки своїм фізичним і хімічним властивостям для застосування в технічній кераміці, електронних матеріалах, оптоелектроніці, твердих електролітах тощо. Діоксид гафнію характеризується великих перерізом радіаційного поглинання теплових нейтронів (115 барн), що дає змогу використовувати матеріали на його основі в ядерній енергетиці [1]. Також HfO₂ має характеризується значним показником заломлення (n ~ 2,1 при 550 нм) [2, 3] та широкою забороненою зоною (5.3–5.9 еВ) [2], прозорість у ближньому УФ (нижче 300 нм) та IЧ (10 мкм) областях [2] та має низькофононну енергію (< 700 см⁻¹) [4].

Крім того, матеріали на основі впорядкованої фази зі структурою типу пірохлору $Ln_2Zr(Hf)_2O_7 \in$ перспективними матеріалами при створення теплозахисних покриттів [5-6]. Теплопровідність зазначених матеріалів характеризується нижчими значеннями в порівнянні із стандартним матеріалом 8 мол.% YSZ (2.1 BT/(м×K при 1000 °C). При 1000 °C матеріали зі структурою типу пірохлору мають наступні значення теплопровідності: $La_2Zr_2O_7$ (1.8 BT/(м×K), Nd₂Zr₂O₇ (1.9 BT/(м×K), Sm₂Z- r_2O_7 (1.5 BT/(м×K), Eu₂Zr₂O₇ (1.7 BT/(м×K), Gd₂Zr₂O₇ (1.4 BT/(м×K) [5]. В роботі [6] зазначається, що при додаванні HfO₂ спостерігається значне зниження теплопро-

відності для матеріалів зі структурою типу пірохлору. Крім того, ізоструктурність гафнатів і цирконатів лантаноїдів сприяє утворенню неперервних рядів твердих розчинів на їх основі [7], що дає змогу варіювати властивостями матеріалів з врахуванням всіх шарів теплозахисних покриттів.

Теоретичним підґрунтям при створенні нових матеріалів функціонального та конструкційного призначення були і лишаються діаграми стану багатокомпонентних систем. Враховуючи значну різноманітність областей використання матеріалів на основі діоксидів цирконію та гафнію легованими оксидами РЗЕ дослідження фазових рівноваг в системі ZrO₂–HfO₂–Eu₂O₃ є актуальним.

Фазові рівноваги в подвійних системах HfO₂-Ln₂O₂ та ZrO₂-Ln₂O₂ характеризуються утворення граничних твердих розчинів заміщення на основі різних поліморфних модифікацій вихідних компонентів [8]. Діоксиди цирконію та гафнію характеризуються наявністю трьох поліморфних модифікацій: моноклінної (М), тетрагональної (T) та кубічної зі структурою типу флюориту (F) [8]. Для оксидів рідкісноземельних елементів відомо від двох до п'яти поліморфних модифікацій: низькотемпературна гексагональна (А), моноклінна (В), низькотемпературна кубічна (C), високотемпературна гексагональна (H), високотемпературна кубічна (X) [9]. Поліморфні перетворення в зазначених оксидах відбуваються в результаті термічної активації (C \rightleftharpoons H, F \rightleftharpoons T, C \rightarrow A, C \rightarrow B) та мартенситного перетворення (T \rightleftharpoons M). Термічно активаційні перетворення в свою чергу поділяються на зворотні (С≓Н, F*≓*T) та незворотні (C→A, C→B) [8]. Таким чином, будова діаграм стану на основі вище зазначених оксидів ускладнена поліморфізмом. Кількість фазових перетворень в системі може змінюватись від семи ($Ln^{3+} = Er^{3+}$ Lu^{3+}) до десяти ($Ln^{3+} =$ Sm³⁺....Gd³⁺). Крім того, існування тих чи інших поліморфних форм в зазначених системах зумовлено стійкістю проміжних фаз, що утворюються.

Інша особливість фазових рівноваг подвійних систем на основі HfO_2 , ZrO_2 , Ln_2O_3 пов'язана з взаємною розчинністю (повною або частковою), що спостерігається між всіма компонентами. Взаємна розчинність компонентів або утворення проміжних фаз залежить від співвідношення іонних радіусів та поліморфізму при одній і тій же температурі.

Фазові рівноваги в подвійній системі $HfO_2-Eu_2O_3$ досліджено в [8, 10–13]. Ліквідус системи характеризується максимумом за температури 2500 °C при 50 мол. % Eu_2O_3 та перетектичною точкою при 68 мол. % (2060 °C) і двома евтектичними точками за температур 2390 і 1930 °C при 43 та 96 мол. % Eu_2O_3 , відповідно. Встановлено, що оксид європію понижує температури поліморфних перетворень HfO_2 . Розчинність Eu_2O_3 в моноклинній модифікації становить 1 мол. % при 1550 °C та 0.5 мол.% при 1250 °C. Координати евтектичної точки, що відповідає перетворенню М \rightleftharpoons Т наступні: 1780 °C та ~ 98 мол. % HfO_2 . Зазначене перетворення відбувається відповідно до реакції: < $M-HfO_2$ > + $<F-HfO_2$ > \rightleftharpoons
С-Т- HfO_2 >. Область гомогенності кубічних твердих розчинів зі структурою типу флюориту зазнає розриву розчинності внаслідок утворення впорядкованої фази зі структурою типу пірохлору ($Eu_2Hf_2O_7$). Встановлено, що упорядкована фаза зі структурою типу пірохлору ($Eu_2Hf_2O_7$). Встановлено, що упорядкована фаза зі структурою типу пірохлору ($Eu_2Hf_2O_7$). Встановлено, що упорядкована фаза зі структурою типу пірохлору ($Eu_2Hf_2O_7$). Встановлено, що упорядкована фаза зі структурою типу пірохлору ($Eu_2Hf_2O_7$). Встановлено, що упорядкована фаза зі структурою типу пірохлору ($Eu_2Hf_2O_7$). Встановлено, що упорядкована фаза зі структурою типу пірохлору ($Eu_2Hf_2O_7$). Встановлено, що упорядкована фаза зі структурою типу пірохлору ос). При температурах нижче 1250 °C в системі HfO_2– Eu_2O_3 утворюється кубічний твердий розчин С-типу. В концентраційному інтервалі 25–47 та 4–20 мол.%

НfO₂ утворюються двофазні області (C+F) та (C+B), відповідно. Область гомогенності моноклинної В-модифікацію розташована в концентраційному інтервалі 0–4 та 0–4.5 мол. % HfO₂ за температур 1250 та 1550 °C, відповідно [8, 11, 13].

Фазові рівноваги в граничній подвійній системі ZrO₂-Eu₂O₃ досліджено в [8, 14-16]. Діаграма стану системи ZrO₂-Eu₂O₃ має подібну будову до вище розглянутої системи HfO₂-Eu₂O₂, хоча і спостерігаються деякі відмінності пов'язані з поліморфізмом вихідних компонентів. В порівняні з системою HfO₂-Eu₂O₃ збільшується температура існування кубічних твердих розчинів С-типу (> 1550 °С). Ліквідус системи ZrO₂-Eu₂O, характеризується евтектичним перетворенням L₂ ≠F+X при 2130 °С та 26 мол. % ZrO₂. Встановлено, що протяжність області гомогенності (T+F) звужується при підвищені температури: від 1–13 мол.% Eu₂O₂ (1250 °C) до 2-8 мол.% Eu₂O₂ (1550 °C). Параметр елементарної комірки впорядкованої фази зі структурою типу пірохлору Eu₂Zr₂O₇ відповідає значенню a = 1.0540 нм, а показник заломлення знаходиться в межах 2.07 < n < 2.1 (для складу 66.7 мол. % ZrO₂). Аналогічно як і для системи HfO₂-Eu₂O₃, область гомогенності кубічних твердих розчинів зі структурою типу флюориту зазнає розриву розчинності внаслідок утворення впорядкованої фази зі структурою типу пірохлору. Протяжність зазначеної області гомогенності за температур 1250 та 1550 °С становить 13-25 мол. % Eu₂O₃ і 37–45 мол. % Eu₂O₃, а також 8–28 мол. % Eu₂O₃ і 36–52 мол. % Eu₂O₃ [8, 12-13]. Показник заломлення ізотропної фази F- ZrO₂ становить n = 2.07 (для складу 55 мол. % ZrO₂-45 мол.% Eu₂O₂). Координати евтектоїдного перетворення Т дМ наступні: 2.5 мол. % Eu₂O₃, 850 °C. Зазначене перетворення відбувається відповідно до реакції Т≓М+Г [8, 16].

В работах [17–20] досліджено фазові рівноваги в системі ZrO_2 –HfO₂. Встановлено, що зазначена система відноситься до числа систем з необмеженою розчинністю компонентів в твердому та рідкому стані [20]. Для системи ZrO_2 –HfO₂ характерно утворення твердих розчинів на основі моноклінної (М), тетрагональної (Т) та кубічної (F) структури вихідних компонентів. Встановлено, що в системі ZrO_2 –HfO₂ відбувається підвищення температури фазових перетворень М \rightarrow T та T \rightarrow F зі збільшенням концентрації HfO₂.

Відомості про фазові рівноваги в потрійній системі ZrO₂–HfO₂–Eu₂O₃ відсутні. В представленій роботі вперше досліджено взаємодію оксидів цирконію, гафнію та європію за температури 1100 °C у всьому інтервалі концентрацій та побудовано відповідний ізотермічний переріз.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕНЬ

Як вихідні речовини використовували азотнокислі солі цирконію та гафнію ZrO(NO₃)₂·2H₂O, HfO(NO₃)₂·2H₂O та Eu₂O₃ з вмістом основного компоненту 99,99 % і азотну кислоту марки ЧДА. Шихти готували з концентраційним кроком 1–5 мол %. Отримані порошки пресували в таблетки діаметром 5 і висотою 4 мм під тиском 10–30 МПа, без зв'язки. Термообробку зразків проводили в печі з нагрівачами H23U5T (фехраль) при 1100 °C протягом 9500 год. у повітрі.

Рентгенофазовий аналіз (РФА) зразків виконано за методом порошку на установці ДРОН-3 за кімнатної температури (СиКа-випромінювання). Крок

сканування становив 0.05-0.1 град, експозиція 4 с у інтервалі кутів 20 від 15 до 90°. Параметри елементарних комірок розраховано за методом найменших квадратів з використанням програми LATTIC. Для визначення фазового складу використовували базу даних Міжнародного комітету порошкових стандартів (JSPSDS International Center for Diffraction Data 1999). Визначення процентного вмісту кубічної фази зі структурою типу флюориту в гетерогенній області проводили з використанням формули:

$$[\% ZrO_{2(\kappa v \delta)}] = (I^{111}_{\kappa} / (I^{111}_{\kappa} + I^{11-1}_{m})) \cdot 100$$
(1)

де I¹¹¹_к – інтегральна інтенсивність дифракційного піку (111) кубічної структури; I¹¹⁻¹_к - інтегральна інтенсивність дифракційного піку (11-1) моноклінної фази.

РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ

Дослідження фазових рівноваг в потрійній системі ZrO_2 -HfO_2-Eu₂O₃ вивчали після проведення термообробки зразків за температури 1100 °C (в атмосфері повітря). Для цього готували зразки, що розташовані вдовж перерізу: Eu₂O₃ – (55 мол. % HfO₂-45 мол. % ZrO₂) та ізоконцентати 5 мол. % Eu₂O₃. За температури 1100 °C утворення нових фаз не спостерігалось.

За отриманими результатами побудовано ізотермічний переріз потрійної діаграми стану системи ZrO_2 – HfO_2 – Eu_2O_3 за температури 1100 °C (рис. 1). Вихідний хімічний і фазовий склади зразків, параметри елементарних комірок фаз, що знаходяться у рівновазі при 1100 °C, наведено у таблиці.

Встановлено, що за температури 1100 °С, у дослідженій системі утворюються тверді розчини на основі: моноклінної (М, просторова група $P2_{1}/C$) модифікації HfO₂ та тетрагональної (Т, просторова група $P4_{2}/nmc$) модифікації ZrO₂, кубічні тверді розчини зі структурою типу флюориту ZrO₂ (HfO₂) (F, просторова група *Fm3m*), кубічні тверді розчини С-типу оксидів рідкісноземельних елементів (просторова група *Ia-3)*, а також упорядкована фаза зі структурою типу пірохлору Eu₂Zr₂O₇ (Eu₂Hf₂O₇) (Ру, просторова група *Fd-3m*).

Встановлено, що в дослідженій системі за температури 1100 °С утворюються чотири ряди неперервних твердих розчинів, три з яких характеризуються кубічною структурою.

Два з них – тверді розчини на основі структури типу флюориту F-ZrO₂(HfO₂). Існування яких зумовлено розривом розчинності області гомогенності F-ZrO₂(HfO₂) внаслідок утворення упорядкованої фази зі структурою типу пірохлору Eu₂Zr₂O₇ (Eu₂Hf₂O₇).

Встановлено, що параметри елементарних комірок кубічних твердих розчинів зі структурою типу флюориту змінюються від a = 0.5305 нм для гетерогенного складу (C+F), що містить 6.75 мол. % ZrO₂–8.25 мол. % HfO₂–85 мол. % Eu₂O₃ до a = 0.5283 нм для граничного складу твердого розчину, що містить 27 мол. % ZrO₂–33 мол. % HfO₂–40 мол. % Eu₂O₃ та до a = 0.5275 нм для гетерогенного складу (Py+F), що містить 29.25 мол. % ZrO₂–35.75 мол. % HfO₂–35 мол. % Eu₂O₃, а також від a = 0.5232 нм для гетерогенного складу (Py+F), що містить 32.625 мол. % ZrO₂–39.875 мол. % HfO₂–27.5 мол. % Eu₂O₃ до a = 0.5218 нм для граничного складу твердого розчину, що містить 33.75 мол. % ZrO_2 –41.25 мол. % HfO_2 –25 мол. % Eu_2O_3 і до a = 0.5176 нм для двофазного зразка (F+M), що містить 40.5 мол. % ZrO_2 –49.5 мол. % HfO_2 –10 мол. % Eu_2O_3 вздовж перерізу Eu_2O_3 –(55 мол.% HfO_2 –45 мол.% ZrO_2). Концентраційну залежність параметрів елементарних комірок кубічних твердих розчинів зі структурою типу флюориту представлено на рисунку 2.

Встановлено, що кубічні тверді розчини зі структурою типу флюориту перебувають в рівновазі з усіма фазами, що утворюються в дослідженій системі за температури 1100 °С.

Рис. 1. Ізотермічний переріз діаграми стану системи ZrO₂−HfO₂−Eu₂O₃ при 1100 °C. (○ – однофазний зразок; **0** – двофазний зразок)

Fig. 1. Isothermal section at 1100°C for the system ZrO_2 -Hf O_2 -Eu $_2O_3$ (\circ - single-phase samples; \bullet - two-phase samples)

Рис. 2. Концентраційна залежність параметрів елементарних комірок кубічних твердих розчинів зі структурою типу флюориту вздовж променю Еи, О, -- (45 мол. % ZrO, -- 55 мол. % HfO,).

Fig. 2. Concentration dependence of the lattice parameters on the basis structure of fluorite-type solid solutions on the section Eu,O₃-(45mol % ZrO₂-55 mol % HfO₂).

Упорядкована фаза зі структурою типу пірохлору також утворює неперервний ряд твердих розчинів при дослідженій температурі. Параметри елементарних комірок упорядкованої фази зі структурою типу пірохлору змінюються від a = 1.0551 нм для гетерогенного складу (Py+F), що містить 29.25 мол. % ZrO₂–35.75 мол. % HfO₂–35 мол. % Eu₂O₃ до a = 1.0505 нм для граничного складу твердого розчину.

Вздовж обмежуючої граничної системи ZrO_2 –HfO₂ утворюється неперервний ряд твердих розчинів на основі моноклінної (М) модифікації $ZrO_2(HfO_2)$. Існування якого зумовлено поліморфізмом діоксиду цирконію [12]. Встановлено, що розчинність Eu_2O_3 в кристалічній ґратці моноклінної структури становить менше 1 мол. %. З використанням результатів рентгенофазового аналізу встановлено, що зразок складу 44.55 мол. % ZrO_2 –54.45 мол. % HfO_2 –15 мол. % Eu_2O_3 розташований в гетерогенній області (F+M). З використанням формули (1) встановлено, що в зазначеному складі кількість кубічної фази зі структурою типу флюориту становить ~ 6 %. Дифрактограму даного складу наведено на рисунку 3.

Рис. 3. Дифрактограма зразка складу 44.55 мол. % ZrO₂-54.45 мол. % HfO₂-15 мол. % Eu₂O₃. Fig. 3. XRD pattern of compositions 44.55 mol % ZrO₂-54.45 mol % HfO₂-15 mol % Eu₂O₃.

В куті збагаченим оксидом європію утворюється область гомогенності кубічних твердих розчинів С-типу. Зазначена область гомогенності дещо звужується в порівнянні з граничними подвійними системами HfO_2 -Eu₂O₃ [27] та ZrO_2 -Eu₂O₃ [12, 42]. Параметри елементарних комірок кубічних твердих розчинів С-типу зменшуються від *a*=1.0841 нм для складу, що містить 0.9 мол. % ZrO_2 -1.1 мол. % HfO_2 -98 мол. % Eu_2O_3 до *a*=1.0806 нм гетерогенного складу (C+F), що містить 4.5 мол. % ZrO_2 -5.5 мол. % HfO_2 -90 мол. % Eu_2O_3 вздовж перерізу Eu_2O_3 -(55 мол.% HfO_2 -45 мол.% ZrO_2).

Внаслідок існування вузької області гомогенності на основі тетрагональної (Т) модифікації діоксиду цирконію в граничній подвійній системі ZrO₂-Eu₂O₃ [8, 12-13], в дослідженому ізотермічному перерізі утворюється трифазна область (T+M+F).

Таблиця

Хімічний і фазовий склад системи ZrO₂–HfO₂–Eu₂O₃ після термообробки зразків при 1100 °C, 9500 год. (за даними РФА)

Table

Chemical content and phase composition of the ZrO₂-HfO₂-Eu₂O₃ system after 9500 hours of heat treatment at 1100 °C (by XRD)

Хімічний склад, мол. %			Фазовий	Параметри елементарних комірок фаз, нм (a± 0.0002)							
7r0	HfO	Fu O	склад	<f></f>	<c>/Py</c>	<m></m>					
				а	а	а	b	С	β		
1	2	3	4	5	6	7	8	9	10		
Переріз Еu ₂ O ₃ -(55 мол. % HfO ₂ -45 мол.% ZrO ₂)											
0.9	1.1	98	<c></c>	-	1.0841	-	_	-	_		
1.8	2.2	96	<c></c>		1.0838	_	_	_	_		
2.25	2.75	95	<c></c>	-	1.0827	-	-	-	-		
4.5	5.5	90	<c>+<f></f></c>	-	1.0806	-	_	-	_		
6.75	8.25	85	<c>+<f></f></c>	0.5305	1.0813	-	_	-	_		
11.25	13.75	75	<c>+<f></f></c>	0.5300	1.0819	-	-	-	-		
13.5	16.55	70	<c>+<f></f></c>	0.5291	1.0805	-	-	-	-		
15.75	19.25	65	<c>+<f></f></c>	0.5296	1.0816	_	_	-	_		
18	22	60	<c>+<f></f></c>	0.5294	1.0808	-	-	-	-		
20.25	24.75	55	<c>+<f></f></c>	0.5297	1.0808	-	-	-	-		
22.5	27.5	50	<c>+<f></f></c>	0.5300	1.0803	_	_	-	_		
24.75	30.25	45	<c>+<f></f></c>	0.5292	1.0804	_	_	-	_		
27	33	40	<f></f>	0.5283	_	-	-	-	-		
28.125	34.375	37.5	<f></f>	0.5276	_	_	_	-	_		
29.25	35.75	35	Py+ <f></f>	0.5275	1.0551	_	_	-	_		
30.375	37.125	32.5	Py+ <f></f>	0.5264	1.0529	-	-	-	-		
31.5	38.5	30	Ру	_	1.0505	_	_	-	_		
32.625	39.875	27.5	Py+ <f></f>	0.5232	1.0463						
33.75	41.25	25	<f></f>	0.5218	_	-	-	-	_		
36	44	20	<f></f>	0.5186	_	-	_	-	_		
38.25	46.75	15	<f></f>	0.5177	_	0.5094	0.4839	0.5567	90.45		
40.5	49.5	10	<f>+<m></m></f>	0.5176	_	0.5124	0.5092	0.5293	97.81		
42.75	52.25	5	<f>+<m></m></f>	0.5172	_	0.5106	0.5070	0.5282	97.73		
43.875	53.625	2.5	<f>+<m></m></f>	0.5186	_	0.5123	0.5099	0.5279	97.95		
44.55	54.45	1	<f>+<m></m></f>		_	0.5127	0.5092	0.5292	97.86		

							TIpoot	юження	таолиц			
1	2	3	4	5	6	7	8	9	10			
Ізоконцентрата 5 мол. % Eu ₂ O ₃												
10	85	5	<m>+<f></f></m>	0.5190	_	0.5102	0.5223	0.5198	98.83			
15	80	5	<m>+<f></f></m>	0.5185	-	0.5096	0.5215	0.5196	98.67			
17.5	77.5	5	<m>+<f></f></m>	0.5186	_	0.5112	0.5233	0.5191	98.83			
20	75	5	<m>+<f></f></m>	0.5185	-	0.5101	0.5226	0.5201	98.75			
35	60	5	<m>+<f></f></m>	0.5177	-	0.5095	0.5227	0.5203	98.71			
40	55	5	<m>++<f></f></m>	0.5178	_	0.5113	0.5228	0.5207	98.73			
50	45	5	<m>++<f></f></m>	0.5179	-	0.5108	0.5228	0.5210	98.72			
55	40	5	<m>++<f></f></m>	0.5184	-	0.5117	0.5240	0.5218	98.79			
70	25	5	<m>+<f></f></m>	0.5178	-	0.5119	0.5235	0.5225	98.78			
75	20	5	<m>++<f></f></m>	0.5179	_	0.5126	0.5234	0.5224	98.77			
80	15	5	<m>+<f></f></m>	0.5174	_	0.5115	0.5233	0.5225	98.66			
85	10	5	< <u>M>+<</u> F>	0.5173	_	0.5129	0.5244	0.5218	98.78			

Ізотермічний переріз діаграми стану системи ZrO₂-HfO₂-Eu₂O₃ при 1100 °C

*) При заданих умовах (T=1100 °C, 9500 год, у повітрі) тетрагональна модифікація T-ZrO₂ не загартовується, замість неї спостерігали утворення моноклинної модифікації M-ZrO₂

Позначення фаз: <F> – тверді розчини на основі кубічної модифікації зі структурою типу флюориту ZrO_2 (HfO₂); <M> - тверді розчини на основі моноклинної модифікації HfO₂; Ру - упорядкована фаза зі структурою типу пірохлору $Eu_2Zr_2O_7$ ($Eu_2Hf_2O_7$), <C> – тверді розчини на основі кубічної модифікації Eu₂O₃.

ВИСНОВОК

В представленій роботі вперше досліджено фазові рівноваги та побудовано ізотермічний переріз потрійної діаграми стану системи ZrO_2 –HfO₂–Eu₂O₃ за температури 1100 °С. Встановлено, що в дослідженій системі утворюються тверді розчини заміщення переважно кубічної структури. Досліджений ізотермічний переріз характеризується утворенням однієї трифазної області (T+M+F) та шести двофазних (F+C, дві-F+Py, F+M, F+T, T+M) областей.

СПИСОК ЛІТЕРАТУРИ

- Ware T., Weaver D., Moxon M., Dean C., Hiles R., Schillebeeckx P., Kopecky S. Evaluation of neutron cross sections for hafnium in the resolved resonance range. // J. Korean Phys. Soc. – 2011. – Vol. 59. – P. 1884-1887. https://doi.org/10.3938/jkps.59.1884
- Lehan J.P., Mao Y., Bovard B.G., Macleod H.A. Optical and microstructural properties of hafnium dioxide thin films // Thin Sol. Film. – 1991. – Vol. 203, N 2 – P. 227-250. https://doi.org/10.1016/0040-6090(91)90131-G

- Borges F.H., Silva da Hora Oliveira D., Hernandes G.P., Ribeiro S.J.L., Gonçalves R.R. Highly red luminescent stabilized tetragonal rare earth-doped HfO₂ crystalline ceramics prepared by sol-gel // Optic. Mater. X. – 2022. – P. 100206. https://doi.org/10.1016/j.omx.2022.100206
- Krebs M.A., Robert A., Condrate Sr. Vibrational Spectra of HfO₂–ZrO₂ Solid Solutions // J. Amer. Ceram. Soc. 1982. – Vol. 65. – P. 144–145. https://doi.org/10.1111/j.1151-2916.1982.tb10520.x
- Bakan E., Vaβen R. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties // J. Therm. Spray. Tech. – 2017. – Vol. 26. – P. 992–1010. https://doi.org/10.1007/s11666-017-0597-7
- Lakiza S., Hrechanyuk M., Red'ko V. The Role of Hafnium in Modern Thermal Barrier Coatings. // Powder. Metall. Met. Ceram. – 2021. – Vol. 60 – P. 78–89. https://doi.org/10.1007/s11106-021-00217-1
- Yurchenko Yu.V., Kornienko O.A., Bykov O.I., Samelyuk A.V., Bataiev Yu. M., Yushkevych S.V., Zamula M.V. Phase equilibrium in the ZrO₂–HfO₂–Sm₂O₃ system at 1500 °C // Chem. Thermod. Ther. Anal. – 2022. – Vol. 8 – P. 100093 https://doi.org/10.1016/j.ctta.2022.100093
- Andrievskaya E.R. Phase Equilibria in the systems of Hafnia, Yttria with rare-earth Oxides. Scientific book Project, Kiev, Naukova Dumka, 2010. 470 p.
- 9. Traverse J.P. Etude du Polymorphisme des sesquioxides de terres rares: These. Grenoble. 1971. 150 c.
- Глушкова В.Б., Кравчинская М.В., Кузнецов А.К., Тихонов П.А. Диоксид гафния и его соединения с оксидами редкоземельных элементов. – Л.: Наука, 1984. – 176 с.
- Scheidecker R.W., Wilder D.R., Moeller H. The system HfO₂-Eu₂O₃ // J. Am. Ceram. Soc. 1977. Vol. 60, N 11-12. – P. 501-504. https://doi.org/10.1111/j.1151-2916.1977.tb14092.x
- 12. Шевченко А.В., Лопато Л.М., Стегний А.И., Майстер И.М., Дверняков В.С., Пасичный В.В. Ликвидус систем HfO₂−TiO₂, zrO₂−TiO₂ и HfO₂−Eu₂O₃ // Докл. АН УССР. Серия А. 1979. № 7. С. 585-588.
- Андриевская Е.Р., Лопато Л.М., Шевченко А.В., Смирнов В.П. Взаимодействие в системе HfO₂-Eu₂O₃ // Изв. РАН. Неорган. материалы. – 1997. – Т. 33, № 7. – С. 835–838.
- Rouanet A. Contribution a l'etude des systemes zirconia oxydes des lanthanides au voisinage de la fusion: Memoire de these // Rev. Intern. Hautes Temper. Refract. – 1971. – Vol. 8, N 2. – P. 161–180.
- Лопато Л.М., Андриевская Е.Р., Шевченко А.В., Редько В.П. Фазовые соотношения в системе ZrO₂-Eu₂O₃ // Журн. неорган. химии. – 1997. – Т. 42, № 10. – С. 1736–1739.
- Шевченко А.В., Ткаченко В.Д., Лопато Л.М., Рубан А.К., Пасичный В.В. Методики определения температур фазовых переходов с использованием солнечного нагрева // Порошковая металлургия. 1986. № 1. С. 91-94.
- 17. Шевченко А.В., Лопато Л.М., Ткаченко В.Д., Рубан А.К. Взаимодействие диоксидов гафния и циркония // Изв. АН СССР. Неорган. материалы. – 1987. – Т. 23, № 2. – С. 259-263.
- Wang C., Zinkevich M., Aldinger F. The Zirconia-Hafnia System: DTA Measurements and Thermodynamic Calculations. // J. Amer. Ceram. Soc. – 2006. – Vol. 891. – P. 3751–3758. https://doi.org/10.1111/j.1551-2916.2006.01286.x
- Gluskova V.B., Kravchinskaya M.V. HfO₂-based refractory compounds and solid solutions: I. Phase diagrams of the HfO₂-M₂O₃ and HfO₂-MO systems // Ceram Internat. 1985. Vol. 11. P. 56–64. https://doi.org/10.1016/0272-8842(85)90010-0
- Andrievskaya E.R., Gerasimyuk G.I., Kornienko O.A., Samelyuk A.V., Lopato L.M., Red'ko V.P. Phase equilibria in the Hf0₂–ZrO₂–CeO₂ system at 1500 °C // Powd. Metall. Met. Ceram. – 2006. – Vol. 45. – P. 448–456. https://doi.org/10.1007/s11106-006-0105-y

Стаття надійшла до редакції 13.07.2023

Yu. V. Yurchenko, O. A. Korniienko, S. F. Korychev, S. V. Yushkevych Institute for Problems of Materials Science of the Ukrainian Academy of Sciences, Krzhizhanovsky str. 3, Kyiv, 03680,e-mail: Kornienkooksana@ukr.net

ISOTHERMAL SECTION OF THE ZrO₂-HfO₂-Eu₂O₃ SYSTEM PHASE DIAGRAM AT 1100 °C

Phase equilibria and structural transformations in the ternary ZrO₂-HfO₂-Eu₂O₂ system at 1100°C were studied by X-ray diffraction over the entire composition range. The samples of different compositions have been prepared from nitrate acid solutions by evaporation, drying, and calcinations at 1100 °C. Fields of solid solutions based on the cubic (F) modification with fluorite-type structure and tetragonal (T) and monoclinic (M) modifications of ZrO₂ (HfO₂), cubic (C) modification of Eu₂O₂, and an ordered intermediate phase with pyrochlore-type structure, $Ln_2Zr_2O_7$ ($Ln_2Hf_2O_7$)(Py), were established to exist in the system. The solubility of Eu,O₃ in M-HfO₂(ZrO₂) is pretty low and approximately less than 1 mol %, which is confirmed by XRD. The boundaries of phase fields and lattice parameters of the phases were determined. The lattice parameters for F phase vary from a = 0.5305 nm in two-phase sample (C+F) containing 6.75 mol % ZrO₂-8.25 mol % HfO₂-85 mol % Eu₂O₂ to a = 0.5283 nm for sample containing 27 mol % ZrO_2 -33 mol % HfO_2 -40 mol % Eu_2O_3 and to a = 0.5275 nm in two-phase sample (Py+F) containing 29.25 mol % ZrO₂-35.75 mol % HfO₂-35 mol % Eu₂O₂, and from a = 0.5232 nm in two-phase sample (Py+F), containing 32.625 mol % ZrO₂-39.875 mol % HfO₂-27.5 mol % Eu₂O₂ to a = 0.5218 nm sample containing 33.75 mol % ZrO₂-41.25 mol % HfO₂-25 mol % Eu₂O₂ and to a = 0.5176 nm in two-phase sample (F+M) containing 40.5 mol % ZrO₂-49.5 mol % HfO₂-10 mol % Eu₂O₂ along the section Eu₂O₂-(55 mol % HfO₂-45 mol% ZrO₂). The fluorite-type structure (F) is in equilibrium with all phases that exist in the ternary ZrO₂-HfO₂-Eu₂O₂ system at 1100°C and forms substitutional solid solutions with phases of the binary systems. In the ZrO₂-HfO₂-Eu₂O₂ system, an infinite series of solid solutions form from the Ln₂Zr₂O₂ (Ln₂Hf₂O₂) (Py) phase. The isothermal section of the ZrO₂-HfO₂-Eu₂O₂ phase diagram at 1100° C contains one three-phase regions (T + M + F) and six two-phase regions (F + C, two-F + Py, F + M, F + T, T + M). No new phases were found in the ZrO_2 -HfO₂-Eu₂O₂ system at 1100 °C and the nature of phase equilibria was determined by the constitution of the boundary binary systems.

Keywords: phase equilibria; phase diagram; solid solutions; lattice parameters of the unit cells; functional materials.

REFERENCES

- Ware T., Weaver D., Moxon M., Dean C., Hiles R., Schillebeeckx P., Kopecky S. *Evaluation of neutron cross sections for hafnium in the resolved resonance range*. J. Korean Phys. Soc., 2011, vol. 59, pp. 1884-1887. https://doi.org/10.3938/jkps.59.1884
- Lehan J.P., Mao Y., Bovard B.G., Macleod H.A. Optical and microstructural properties of hafnium dioxide thin films. Thin Sol. Film., 1991, vol. 203, no 2, pp. 227-250. https://doi.org/10.1016/0040-6090(91)90131-G
- Borges F.H., Silva da Hora Oliveira D., Hernandes G.P., Ribeiro S.J.L., Gonçalves R.R. Highly red luminescent stabilized tetragonal rare earth-doped HfO, crystalline ceramics prepared by sol-gel. Optic. Mater. X, 2022, pp. 100206. https://doi.org/10.1016/j.omx.2022.100206
- Krebs M.A., Robert A., Condrate Sr. Vibrational Spectra of HfO₂–ZrO₂ Solid Solutions. J. Amer. Ceram. Soc, 1982, vol. 65, pp. 144–145. https://doi.org/10.1111/j.1151-2916.1982.tb10520.x
- Bakan E., Vaßen R. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. J. Therm. Spray. Tech, 2017, vol. 26, pp. 992–1010. https://doi.org/10.1007/s11666-017-0597-7

- Lakiza S., Hrechanyuk M., Red'ko V. *The Role of Hafnium in Modern Thermal Barrier Coatings*. Powder. Metall. Met. Ceram., 2021, vol. 60, pp. 78–89. https://doi.org/10.1007/s11106-021-00217-1
- Yurchenko Yu.V., Kornienko O.A., Bykov O.I., Samelyuk A.V., Bataiev Yu.M., Yushkevych S.V., Zamula M.V. *Phase equilibrium in the ZrO₂–HfO₂–Sm₂O₃ system at 1500 °C.* Chem. Thermod. Ther. Anal. 2022, vol. 8, pp. 100093 https://doi.org/10.1016/j.ctta.2022.100093
- 8. Andrievskaya E.R. *Phase Equilibria in the systems of Hafnia, Yttria with rare-earth Oxides*. Scientific book Project, Kiev, Naukova Dumka, 2010, 470 p.
- 9. Traverse J.P. Etude du Polymorphisme des sesquioxides de terres rares. These. Grenoble. 1971, 150 p.
- 10. Hlushkova V.B., Kravchynskaia M.V., Kuznetsov A.K., Tykhonov P.A. Dyoksyd hafnyia y eho soedynenyia s oksydamy redkozemelnikh elementov. Leningrad, Nauka, 1984, 176 p. (in Russian)
- Scheidecker R.W., Wilder D.R., Moeller H. The system HfO₂-Eu₂O₃. J. Am. Ceram. Soc, 1977, vol. 60, no 11-12, pp. 501-504. https://doi.org/10.1111/j.1151-2916.1977.tb14092.x
- Shevchenko A.V., Lopato L.M., Stehnyi A.Y., Maister Y.M., Dverniakov V.S., Pasychnui V.V. Lykvydus system HfO,-TiO,, ZrO,-TiO, y HfO,-Eu,O, Dokl. AN USSR. Seryia A, 1979, no 7, pp. 585-588. (in Russian)
- Andryevskaia E.R., Lopato L.M., Shevchenko A.V., Smyrnov V.P. Vzaymodeistvye v systeme HfO₂-Eu₂O₃. Yzv. RAN. Neorhan. Material. 1997, vol. 33, no 7, pp. 835–838. (in Russian)
- Rouanet A. Contribution a l'etude des systemes zirconia oxydes des lanthanides au voisinage de la fusion: Memoire de these. Rev. Intern. Hautes Temper. Refract., 1971, vol. 8, no 2, pp. 161–180.
- Lopato L.M., Andryevskaia E.R., Shevchenko A.V., Redko V.P. Fazovie sootnoshenyia v systeme ZrO₂-Eu₂O₃. Zh. Neorhan. Khymyy, 1997, T. 42, no 10, pp. 1736–1739. (in Russian)
- Shevchenko A.V., Tkachenko V.D., Lopato L.M., Ruban A.K., Pasychnii V.V. Metodyky opredelenyia temperatur fazovikh perekhodov s yspolzovanyem solnechnoho nahreva. Poroshkovaia metallurhyia, 1986, no 1, pp. 91-94. (in Russian)
- 17. Shevchenko A. V., Lopato L. M., Tkachenko V. D., Ruban A. K. Vzaymodeistvye dyoksydov hafnyia y tsyrkonyia. Yzv. AN SSSR. Neorhan. Materyaly, 1987, T. 23, no 2, pp. 259-263. (in Russian)
- Wang C., Zinkevich M., Aldinger F. The Zirconia-Hafnia System: DTA Measurements and Thermodynamic Calculations. J. Amer. Ceram. Soc, 2006, vol. 89, pp. 3751–3758. https://doi.org/10.1111/j.1551-2916.2006.01286.x
- Gluskova V.B., Kravchinskaya M.V. HfO₂-based refractory compounds and solid solutions: I. Phase diagrams of the HfO₂-M₂O₃ and HfO₂-MO systems. Ceram Internat, 1985, vol. 11, pp. 56–64. https://doi.org/10.1016/0272-8842(85)90010-0
- Andrievskaya E.R., Gerasimyuk G.I., Kornienko O.A., Samelyuk A.V., Lopato L.M., Red'ko V.P. Phase equilibria in the HfO₂–ZrO₂–CeO₂ system at 1500 °C. Powd. Metall. Met. Ceram, 2006, vol. 45, pp. 448–456. https://doi.org/10.1007/s11106-006-0105-y