УДК 546-31:621:654:822

Я.С. Тищенко, С.М. Лакиза, В.П. Редько, О.В. Дуднік

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, відділ фізико-хімії і технології тугоплавких оксидів, вул. Кржижанівского, 3, Київ-142, 03142, Україна, e-mail: <u>tyshjana@ukr.net</u>

ІЗОТЕРМІЧНИЙ ПЕРЕРІЗ ДІАГРАМИ СТАНУ СИСТЕМИ Al,O₃-TiO,-La,O₃ ПРИ 1400 °C

Вперше побудовано ізотермічний переріз діаграми стану системи Al_2O_3 -TiO_2-La_2O_3 при 1400 °C. Нових фаз і помітних областей гомогенності на основі компонентів та подвійних сполук не знайдено. Ізотермічний переріз містить шість вузьких двофазних та сім трифазних областей. Можливість тріангуляції системи визначається фазою La₂Ti₂O₇, яка знаходиться в рівновазі зі сполуками Al_2 TiO₅, LaAlO₃ та компонентами системи TiO₂ i Al_2O_3 . Утворення фаз La₄Ti₉O₂₄, La₂Ti₃O₁₂ та La₂TiO₅ у подвійній обмежуючій системі TiO₂-La₂O₃ спричиняє появу частково бінарних перерізів Al_2 TiO₅-La₄Ti₉O₂₄, Al_2 TiO₅-La₂D₁₂ та LaAlO₃-La₂TiO₅.

Ключові слова: система Al₂O₃-TiO₂-La₂O₃, фазові рівноваги, ізотермічний переріз, діаграма стану.

В потрійній системі Al₂O₃-TiO₂-La₂O₃ існують подвійні сполуки з діелектричними, п'єзоелектричними та фероелектричними властивостями [1-8]. Завдяки діелектричним властивостям матеріали системи TiO₂-La₂O₃ використовують при створенні конденсаторів з низьким температурним коефіцієнтом [4, 6] та мікрохвильових високочастотних діелектриків [6]. Незвично висока температура Кюрі (T_=1461±5 °C) [9] сполуки типу пірохлору La₂Ti₂O₇ відкриває перспективи розробки матеріалів для високотемпературних п'єзоелектричних, фероелектричних та електрооптичних пристроїв [1, 9]. Композиційні матеріали на основі системи TiO₂-La₂O₃ використовують як каталізатори [10]. В системі Al₂O₃-TiO₂ існує сполука Al, TiO₅ (тіаліт) з аномально низьким коефіцієнтом термічного розширення в діапазоні 0.2·10⁻⁶ К⁻¹–1·10⁻⁶ К⁻¹ [11], порівнянним з таким для SiO₂, але монокристали Al, TiO₅ демонструють надзвичайну анізотропію в діапазоні (+3)→(-19) • 10⁻⁷ К⁻¹ [12], що спричиняє появу мікротріщин на межі зерен. Це дозволяє створювати на її основі матеріали для носіїв каталізаторів, зносо- та корозійностійку кераміку та ін. Низька здатність до спікання та невисока міцність Al₂TiO₅ є істотними недоліками для створення композиційних матеріалів з його участю.

Крім цього, в потрійній системі Al_2O_3 —Ti O_2 —La $_2O_3$ очікується існування нових трифазних та двофазних евтектик, що перспективні для створення спрямовано закристалізованих високотемпературних конструкційних матеріалів. Для успішного одержання матеріалів у вказаній системі необхідно знати характер фазових рівноваг, який відображає діаграма стану.

Метою цієї роботи є побудова ізотермічного перерізу діаграми стану системи Al_2O_3 -TiO_2-La₂O₃ при температурі 1400 °C, що є частиною систематичних досліджень з побудови діаграм стану систем Al_2O_3 -TiO_2-Ln₂O₃, де Ln = (Nd, Sm, Gd, Er, Yb та Y).

Подвійні обмежуючі системи Al_2O_3 -TiO₂-La₂O₃ вивчені досить детально, і їх діаграми стану побудовано (рис. 1) [3, 5, 6, 9, 13–22].

В системі Al₂O₃-TiO₂ (T) існує сполука Al₂TiO₅ (AT, тіаліт), яка не має помітної області гомогенності і зазнає фазового перетворення $\alpha \leftrightarrows \beta$ при 1820 °C. Кристалічну структуру високотемпературної фази α не визначено з причини неможливості її загартування [13]. Низькотемпературна фаза β кристалізується в ромбічній структурі типу псевдобрукіту з параметрами граткиa = 9,46, b = 3,60, c = 9,65 Å [14]. Сполука AT стабільна вище 1200 °C, а нижче цієї температури розпадається на α -Al₂O₃(AL) та рутил при тривалому відпалі [14]. Автори [13] методом спрямованої кристалізації виявили в системі Al₂O₃-TiO₂, в області, багатій на Al₂O₃, сполуку Al₆Ti₂O₁₃ (3Al₂O₃•2TiO₂), яка утворюється за перитектичною реакцією L+Al₂O₃ $\leftrightarrows Al₆Ti₂O₁₃ і при пониженні температури розкладається на Al₂O₃ та AT.$

Автори підтверджують, що отримані зразки є нерівноважними. Хоча подібна інформація міститься і в роботі [14], ми вважаємо цю фазу метастабільною і на прийнятій нами діаграмі стану системи Al_2O_3 -TiO₂ не показуємо. Систему детально вивчено в роботі [15]. Авторами наведено термодинамічні розрахунки ізотермічних перерізів діаграми стану системи при 900, 1000 та 1100 °C, які підтверджуються експериментально в роботах [15]. Діаграма стану системи Al_2O_3 -TiO₂ характеризується також двома евтектичними перетвореннями при 20%* Al_2O_3 та 66,5 мол.% TiO₂ (1705 и 1840 °C, відповідно) та метатектичною точкою з координатами 45 мол.% Al_2O_3 та 1820 °C [13–15], яка відповідає перетворенню L+ α -AT \leftrightarrows β-AT).

Систему TiO₂-La₂O₃ детально вивчено в роботах [3, 5, 6, 16,17].

В системі встановлено існування п'яти сполук: La₂TiO₅ (LT) та La₂Ti₂O₇ (LT₂), які плавляться конгруентно при 1700 [16] та 1790 °С [16]; відповідно, La₄Ti₉O₂₄ (L₂T₉), яка плавиться інконгруентно при 1455 °С за реакцією L+LT₃ \Rightarrow L₂T₉, La₂Ti₃O₉ (LT₃), яка плавиться інконгруентно при 1660 °С за реакцією L+LT₂ \Rightarrow LT₃ Ta La₄Ti₃O₁₂ (L₂T₃), яка розкладається за реакцією L₂T₃ \Rightarrow LT₂+LT при 1600 °С [16].

Сполука LT₂ має моноклінну структуру (a=13,0185, b=5.5474, c=7.8114 Å, $\beta=98,43^{\circ}$) з просторовою групою $P2_{1}[9]$, структурного типу Ca,Nb₂O₇.

СполукаLT, має орторомбічну структуру ($a_o = 10.50$, $b_o = 11.4$, $c_o = 3.68$ Å з просторовою групою *Pnam*) [18].

В системі експериментально встановлено існування трьох евтектичних процесів: L $\Box L_2T_9$ +T при 1445 °C, 89мол.% TiO₂, L $\Box LT$ +LT₂ при 1675 °C, 54мол.% TiO₂ та L $\Box A$ -L₂O₃+LT при 1630 °C, 26 мол.% TiO₂ [17], а також двох перитектичних процесів: L+LT₂ $\Box LT_3$ при 1650 °C, 77мол.% TiO₂ та L+LT₃ $\Box L_2T_9$, 1445 °C, 88 мол.% TiO₂.

В системі Al₂O₃–La₂O₃ утворюються дві сполуки: з перовскітоподібною структурою LaAlO₃ (LA) (просторова група *Pbnm*), що плавиться конгруентно при 2110 °C, та з гексагональною структурою La₂O₃×11Al₂O₃ (β-фаза) (просторова група *P63/mcm*), що плавиться інконгруентно при 1850 °C [19–22]. Фаза з 80% La₂O₃ з ромбічною структурою, знайдена авторами [19, 22], виявилась метастабільною. Помітної розчинності на основі компонентів і подвійних сполук не виявлено.

^{*} Тут і надалі концентрації подано у % (мол.).

Fig. 1. Binary bounding systems for the ternary systems Al_2O_3 -Ti O_2 -La $_2O_3$ [3, 5, 6, 9, 13–22].

Фазові перетворення в La_2O_3 проявляються на ліквідусі у вигляді метатектичних точок з координатами 2140 °C, 89% La_2O_3 та 2050 °C, 85% La_2O_3 .

Подвійні системи, що обмежують потрійну Al_2O_3 -TiO₂-La₂O₃, наведено на рис. 1. Дані про фізико-хімічну взаємодію в системі Al_2O_3 -TiO₂-La₂O₃вивчено недостатньо. У роботі [5] наведено попередні дані про субсолідусні фазові рівноваги в цій системі та дослідження впливу Al_2O_3 на властивості $La_{2/3}$ TiO₃ зі структурою типу перовскіту.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

Робочу модель діаграми стану системи Al_2O_3 -Ti O_2 -La $_2O_3$ створювали на основі діаграм стану подвійних обмежуючих систем (рис. 1).

З урахуванням робочої моделі, склади зразків для побудови ізотермічного перерізу вибирали таким чином, щоб вони знаходились на бінарних перерізах та всередині вторинних трикутників. Склади обраних зразків, позначених номерами від 1 до 21 наведено в таблиці. Зразки для досліджень готували хімічним методом. Вихідними речовинами обрано Al(NO₃)₃·9H₂O з вмістом основної речовини 98% Донецького заводу хімреактивів, TiO₂ з вмістом основної речовини 99,95% Донецького заводу хімреактивів та La₂O₃ з вмістом основної речовини 99,99% Дослідного заводу Фізико-хімічного інституту HAH України (м. Одеса).

Зважені на аналітичних вагах ВЛР-200 з точністю до 0,0005 г необхідні кількості речовин розчиняли у воді з додаванням декількох крапель концентрованої азотної кислоти, осаджували аміачною водою, висушували, прожарювали у повітрі при 800 °C з метою видалення вологи та органічних речовин, і одержаний порошок пресували в таблетки діаметром і висотою 5 мм. Для побудови ізотермічних перерізів зразки відпалювали у повітрі в печі NaberthermGmbHLHT 08/17 (Німеччина) при 1400 °C впродовж 80 год.

Рентгенофазовий аналіз (РФА) виконано на установці ДРОН-1.5 (Си_{ка}- випромінювання, Ni-фільтр) зі швидкістю сканування 1/4–4 град/хв в інтервалі кутів 20 від 15 до 100 град. Інтенсивність ліній оцінювали візуально за десятибальною шкалою, або в процентах за відносною висотою піків на дифрактограмі. Фазовий аналіз зразків проводили з використанням карток X-Ray Powder Diffraction File.

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Аналіз зразка 15, відпаленого при 1400 °С, показав, що за даними РФА (таблиця) він містить три фази: АТ, Т та L_2T_9 . Зразок 16 за даними РФА містить три фази АТ, L_2T_9 , LT_2 , що свідчить про розташування його складу усередині конодного трикутника $AT-L_2T_9-LT_2$. Зразок 17 містить дві фази: АТ та LT_2 . Зразки 1, 8 та 18 трифазні ($AL+AT+LT_2$, таблиця), що свідчить про їх належність до конодного трикутника $AL-AT-LT_2$. Наявність за даними РФА в сплаві 19 двох фаз AL та LT_2 (таблиця) свідчить про велику імовірність квазібінарності перерізу $AL-LT_2$. У зразках 2–4, 9–11, 20 та 21, крім фаз AL та LT_2 , знайдено фазу LA, кількість якої була найбільша у зразках 21 та 4. Зразки 12 та 5 містять дві фази LA+LT. Аналіз зразків 6, 7, 13, 14 за даними РФА підтверджує три фази ($LA+LT+La_2O_3$) і його склад відноситься до однойменного конодного трикутника.

Одержані результати дозволили побудувати ізотермічний переріз діаграми стану системи Al_2O_3 -TiO_2-La₂O₃ при 1400 °C (рис. 2). Цей переріз містить тринадцять областей, з яких шість вузьких двофазних $AT-L_2T_9$, $AT-LT_2$, $AL-LT_2$, $LA-LT_2$, $LA-L_2T_3$, LA-LT, та сім трифазних: $T-AT-L_2T_9$, $AT-L_2T_9-LT_2$, $AL-AT-LT_2$, $AL-T_2T_2-LA$, $LA-LT_2-L_2T_3$, $LA-L_2T_3-LT$, $LA-LT-La_2O_3$. Нових фаз і помітних областей розчинності на основі компонентів та подвійних сполук в потрійній системі, як і прогнозувалось, не виявлено. Тріангуляція системи визначається фазою LT_2 , яка знаходиться в рівновазі зі сполуками AT, LA та компонентами системи T та AL. В результаті появи фаз L_2T_9 , L_2T_3 , LT в подвійній обмежуючій системі TiO_2-La_2O_3 з'являються частково квазібінарні перерізи $AT-L_2T_9$, $LA-L_2T_3$, $TA-LT_2$.

В результаті проведеного дослідження встановлено характер фазових рівноваг в системі Al₂O₃-TiO₂-La₂O₃ при 1400 °C, який відображено на ізотермічному пере-

Таблиця

Фазовий склад зразків системи Al₂O₃–TiO₂–La₂O₃, за даними рентгенофазового аналізу

Table

Nominal compositions and eguilibrium phase assemblages for Al₂O₃-TiO₂-La₂O₃, according to XRD

Номер	Склад,% (мол.)			Фазовий склад
	AL 0	TiO	La O	Температура відпалу, °С 1400
1	45	45	10	ΔΙ +ΔΤ+Ι Τ
1			10	
2	37,5	37,5	25	AL+LT ₂ +LA
3	33,25	33,25	33,5	AL+LT ₂ +LA
4	30	30	40	AL+LT ₂ +LA
5	25	25	50	LA+LT
6	20	20	60	LA+LT+La2O3
7	15	15	70	LA+LT+La2O3
8	75	20	5	AL+AT+LT ₂
9	60	20	20	AL+LT ₂ +LA
10	50	20	30	AL+LT ₂ +LA
11	40	20	40	AL+LT ₂ +LA
12	30	20	50	LA+LT
13	25	20	55	LA+LT+La2O3
14	10	20	70	LA+LT+La2O3
15	10	80	10	AT+TiO ₂ +L ₂ T ₉
16	15	70	15	AT+L ₂ T ₉ +LT ₂
17	20	60	20	AT+LT ₂
18	22	56	22	AL+AT+LT ₂
19	25	50	25	AL+LT ₂
20	30	40	30	AL+LT ₂ +LA
21	45	10	45	AL+LT ₂ +LA

Рис. 2. Ізотермічний переріз діаграми стану системи Al₂O₃-TiO₂-La₂O₃ при 1400 °C: • -двофазні зразки, о -трифазні зразки.

Fig. 2. Isothermal section of the Al_2O_3 -Ti O_2 -La $_2O_3$ phase diagram at 1400 °C: • – two-phase samples; • – three-phase samples.

різі діаграми стану системи при цій температурі. Взаємодія в системі визначається сполукою La₂Ti₂O₇, яка перебуває в рівновазі з більшістю фаз системи і визначає можливість її тріангуляції. Нових фаз і помітних областей гомогенності на основі компонентів та подвійних сполук в системі не знайдено. У трифазних областях слід очікувати наявність потрійних, а на бінарних перерізах – подвійних евтектичних точок.

СПИСОК ЛІТЕРАТУРИ

- Fuierer P.A., Newnham R.E. La₂Ti₂O₇ ceramics // J. Am. Ceram. Soc.- 1991. Vol. 74, N11. P. 2876-2881. http://dx.doi.org/10.1111/j.1151-2916.1991.tb06857.x
- Yamamoto J.K., Bhalla A.S. Piezoelectric properties of layered perovskite A₂Ti₂O₇ (A=La and Nd) singlecrystal fibers // J. Appl. Phys.- 1991. - Vol. 70, N8. - P. 4469-4471. http://dx.doi.org/10.1063/1.349078
- 3. Prasadarao A.V., Selvaraj U., Komarneni S., Bhalla A.S. Grain orientation in sol-gel derived Ln₂Ti₂O₇ ceramics (Ln=La, Nd) // Mater. Letters. 1991. Vol. 12. P. 306–310. http://dx.doi.org/10.1016/0167–577X(91)90106-G
- Takahashi J., Kageyama K., Hayashi T. Dielectric properties of double-oxide ceramics in the system Ln₂O₃-TiO₂ (Ln = La, Nd and Sm) // Jpn. J. Appl. Phys. – 1991. – Vol. 30, N9B. – P. 2354–2358.

- SkapinS.D., KolarD., SuvorovD. X-ray diffraction and microstructural investigation of the Al₂O₃-La₂O₃-TiO₂ // J. Am. Ceram. Soc.- 1993. - Vol. 76, N9. - P. 2359–2362. http://dx.doi.org/10.1111/j.1151–2916.1993. tb07777.x
- Skapin S.D., Kolar D., Suvorov D. Phase stability and equilibria in the La₂O₂-TiO₂ system // J. Eur. Ceram. Soc. - 2000. - Vol. 20. - P. 1179-1185. http://dx.doi.org/10.1016/S0955-2219(99)00270-8
- Yan H., Ning H., KanY., WangP., Reece M.J. Piezoelectric Ceramics with Super-Higs Curie Points // J. Am. Ceram. Soc. – 2009. – Vol. 92, N10. – P. 2270–2275. http://dx.doi.org/10.1111/j.1551–2916.2009.03209.x
- Bayart A., Saitzek S., Ferri A., Pouhet R., Chambrier M.-H., Roussel P., Desfeuxa R. Microstructure and nanoscale piezoelectric / ferroelectric properties in Ln₂Ti₂O₇ (Ln=La, Pr and Nd) oxide thin films grown by pulsed laser deposition // Thin Solid Films.– 2014. – Vol. 553. – P. 71–75. http://dx.doi.org/10.1016/j.tsf.2013.11.036
- GaoZ., Suzuki T.S., Grasso S., Sakka Y., Reece M.J. Highly anisotropic single crystal-like La₂Ti₂O₇ ceramic produced by combined magnetic field alignment and templated graing rowth // J. Eur. Ceram. Soc.- 2015. – Vol. 35. – P. 1771–1776. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.003
- Reddy B.M., Sreekanth P.M., Reddy E.P. Surface characterization of La₂O₃-TiO₂ and V₂O₅/La₂O₃-TiO₂ catalysts // J. Phys. Chem. B.- 2002. Vol. 106, N22. P. 5695-5700. http://dx.doi.org/10.1021/jp014487p
- Buscaglia V., Nanni P. Decomposition of Al₂TiO₅ and Al₂(1-x)Mg_xTi_(1+x)O₅ ceramics // J. Am. Ceram. Soc.– 1998. – Vol. 812, N10. – P. 2615–2653. http://dx.doi.org/10.1111/j.1151–2916.1998.tb02672.x
- Zaharescu M., Crisan M., Preda M., Fruth V., Preda S. Al₂TiO₅-based ceramics obtained by hydrothermal process // J. Optoelectron. Advanc. Mat. – 2003. – Vol. 5, N5. – P. 1411–1416.
- Berger M.-H., Sayir A. Directional solidification of Al₂O₃-Al₂TiO₅ system // J. Eur. Ceram. Soc.- 2008. Vol. 28. - P. 2411-2419. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.03.005
- 14. *Тарасовский В.П., Лукин Е. С.* Титанат алюминия–методы получения, микроструктура, свойства // Огнеупорные материалы.– 1985.– № 6.–С. 24–31.
- Ilatovskaia M., Fabrichnaya O., Savinykh G. Thermodynamic description of the Ti–Al–O system based on experimental data // J. Phase Equilib. Diffus.– 2017. – Vol. 38. – P. 175–184. http://dx.doi.org/10.1007/s11669– 016–0509–4
- Gonga W., Zhang R. Thermodynamic in vestigation of the TiO₂-La₂O₃ pseudo-binary system // Thermochimica Acta. - 2012. Vol. 534. - P. 28-32. http://dx.doi.org/:10.1016/j.tca.2012.01.025
- MacChesney J.B., Sauer H.A. The system La₂O₃-TiO₂ phase equilibria and electrical properties // J. Am. Ceram. Soc. - 1962. - Vol. 45, N9. - P. 416-422. http://dx.doi.org/10.1111/j.1151-2916.1962.tb11185.x
- Petrova M.A., Grebenshchikov R. G. Specific features of the phase formation in the titanate systems Ln₂TiO₅-Ln'₂TiO₅ (Ln = La, Gd, Tb, Er; Ln' = Tb, Lu) // Glass Phys. Chem.- 2008. - Vol. 34, N5. - P. 603-607. http://dx.doi.org/10.1134/S1087659608050118
- Бондарь И. А., Виноградова Н.В. Фазовые равновесия в системе окись лантана-глинозем // Изв. АН СССР. Сер. Хим.– 1964.– № 5.–С. 785–790.
- Mizuno M., Berjoan R., Coutures J.P., Foex M. Phase diagram of the system Al₂O₃-La₂O₃ atelevated temperatures // J. Ceram. Soc. Jap.- 1974. - Vol. 82, N12. - P. 631-636.
- 21. *Ropp R.C., Libovitz G.G.* The nature of the alumina-rich phase in the system La₂O₃-Al₂O₃ // J. Am. Ceram. Soc.- 1978. Vol. 61, N11-12. P. 473-475. http://dx.doi.org/10.1111/j.1151-2916.1978.tb16119.x
- 22. *Yamaguchi O., Sagiura K., Mitsui A. M., Shimizu K.* New compound in the system La₂O₃-Al₂O₃// J. Am. Ceram. Soc.- 1985. Vol. 68, N2. P. 44-45. http://dx.doi.org/10.1111/j.1151-2916.1985.tb15278.x

Стаття надійшла до редакції 09.02.2023

I.S. Tyshchenko, S.M. Lakiza, V.P. Red'ko, E.V. Dudnik

Frantsevich Institute for Problems of Materials Science, Ukraine NASU, Kiev, Department of Physical chemistry and refractory oxides technology, 3 Krzhizhanovskystr., Kyiv, 03142, Ukraine, e-mail: tyshjana@ukr.net

ISOTHERMAL SECTION OF THE Al₂O₃-TiO₂-La₂O₃ PHASE DIAGRAM AT 1400 °C

Isothermal section of the Al₂O₃-TiO₂-La₂O₃ phase diagram at 1400 °C is constructed for the first time.It is the part of systematic investigations of Al2O3-TiO2-Ln2O3 (Ln=lanthanides, Y) systems. The 1400 °C was taken as the temperature, at which no liquid is expected in the system. Samples were prepared by a chemical method. Samples were annealed in air at 1400 °C for 80 hour sand cooled in the furnace. Phases in the samples were determined by XRD analysis. New phases and appreciable homogeneity regions based on components and binary compounds were not found. Isothermal section consists of six narrow two-phase and seven three-phase regions. Triangulation of the system is determined by the phase La₂Ti₂O₂, which is in equilibrium with compounds Al, TiO₅, LaAlO₃ and system components TiO₂ and Al₂O₃. Formation of phases $La_4Ti_9O_{24}$, $La_2Ti_3O_{12}$ and La_2TiO_5 in binary boundary system $TiO_2-La_2O_3$ causes the appearance of partially quasibinary sections Al, TiO₅-La₄Ti₉O₂₄, Al, TiO₅-La, Ti₃O₁₂ and LaAlO₂-La₂TiO₅. The obtained results make a significant contribution to the understanding of interactions between the components in the system studied. The system includes binary compounds with high electro-optical, ferroelectric, piezoelectric, photocatalytic properties, mikrowave dielectric ceramic. In addition, in the system we expects the existence of new three-phase and two-phase eutectics, which can be obtained in the form of high-temperature structural materials by the directional solidification. This fact opens up the possibility to find and establish the coordinates of new three-phase and two-phase eutectics for directional solidification and to obtain new high-temperature structural materials in the Al₂O₂-TiO₂-La₂O₂ system.

Keywords: Al₂O₃-TiO₂-La₂O₃ system, phase equilibria, isothermal section, phase diagram.

REFERENCES

- Fuierer P.A., Newnham R.E. La₂Ti₂O₇ ceramics. J. Am. Ceram. Soc., 1991, vol. 74, no 11, pp. 2876–2881. http://dx.doi.org/10.1111/j.1151–2916.1991.tb06857.x
- Yamamoto J.K., Bhalla A.S. Piezoelectric properties of layered perovskite A₂Ti₂O₇ (A=La and Nd) singlecrystal fibers. J. Appl. Phys., 1991, vol. 70, no 8, pp. 4469–4471. http://dx.doi.org/10.1063/1.349078
- Prasadarao A.V., Selvaraj U., Komarneni S., Bhalla A.S. Grain orientation in sol-gel derived Ln₂Ti₂O₂ ceramics (Ln=La, Nd). Mater. Letters., 1991, vol. 12, pp. 306–310. http://dx.doi.org/10.1016/0167–577X(91)90106-G
- Takahashi J., Kageyama K., Hayashi T. Dielectric properties of double-oxide ceramics in the system Ln₂O₃-TiO₂ (Ln = La, Nd and Sm). Jpn. J. Appl. Phys., 1991, vol.30, no 9B, pp. 2354–2358.
- Skapin S.D., Kolar D., Suvorov D. X-ray diffraction and microstructural investigation of the Al₂O₃-La₂O₃-TiO₂. J. Am. Ceram. Soc., 1993, vol. 76, no 9, pp. 2359–2362. http://dx.doi.org/10.1111/j.1151–2916.1993.tb07777.x
- Skapin S.D., Kolar D., Suvorov D. Phase stability and equilibria in the La₂O₂-TiO₂ system. J. Eur. Ceram. Soc., 2000, vol. 20, pp. 1179–1185. http://dx.doi.org/10.1016/S0955–2219(99)00270–8
- Yan H., Ning H., Kan Y., Wang P., Reece M.J. Piezoelectric Ceramics with Super-Higs Curie Points. J. Am. Ceram. Soc., 2009, vol. 92, no 10, pp. 2270–2275. http://dx.doi.org/10.1111/j.1551–2916.2009.03209.x
- Bayart A., Saitzek S., Ferri A., Pouhet R., Chambrier M.-H., Roussel P., Desfeuxa R. Microstructure and nanoscale piezoelectric/ferroelectric properties in Ln₂Ti₂O₇ (Ln=La, Pr and Nd) oxide thin films grown by pulsed laser deposition. Thin Solid Films., 2014, vol. 553, pp. 71–75. http://dx.doi.org/10.1016/j.tsf.2013.11.036
- Gao Z., Suzuki T.S., Grasso S., Sakka Y., Reece M.J. Highly anisotropic single crystal-like La₂Ti₂O₇ ceramic produced by combined magnetic fieldalign mentand templated graing rowth. J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1771–1776. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.003
- Reddy B.M., Sreekanth P.M., Reddy E.P. Surface characterization of La₂O₃-TiO₂ and V₂O₃/La₂O₃-TiO₂ catalysts. J. Phys. Chem. B., 2002, vol. 106, no 22, pp. 5695–5700 http://dx.doi.org/10.1021/jp014487p

- Buscaglia V., Nanni P. Decomposition of Al₂TiO₅ and Al_{2(1-x)}Mg_xTi_(1+x)O₅ ceramics. J. Am. Ceram. Soc., 1998, vol. 812, no 10, pp. 2615–2653. http://dx.doi.org/10.1111/j.1151–2916.1998.tb02672.x
- Zaharescu M., Crisan M., Preda M., Fruth V., Preda S. Al₁TiO₅-based ceramics obtained by hydrothermal process. J. Optoelectron. Advanc. Mat., 2003, vol. 5, no 5, pp. 1411–1416.
- Berger M.-H., Sayir A. Directional solidification of Al₂O₃-Al₂TiO₅ system. J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2411–2419. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.03.005
- Tarasovskij V.P., Lukin E.S. Titanat alyuminiya metody polucheniya, mikrostruktura, svojstva. Ogneupor. mater., 1985, no 6, pp. 24–31.
- Ilatovskaia M., Fabrichnaya O., Savinykh G. Thermodynamic description of the Ti-Al-O system based on experimental data. J. Phase Equilib. Diffus., 2017, vol. 38, pp. 175–184. http://dx.doi.org/10.1007/s11669– 016–0509–4
- Gonga W., Zhang R. Thermodynamic investigation of the TiO₂-La₂O₃ pseudo-binarysystem. Thermochim. Acta., 2012, vol. 534, pp. 28–32. <u>http://dx.doi.org/10.1016/j.tca.2012.01.025</u>
- MacChesney J.B., Sauer H.A. *Thesystem La₂O₃-TiO₂ phase equilibria and electrical properties*. J. Am. Ceram. Soc., 1962, vol. 45, no 9, pp. 416–422. http://dx.doi.org/10.1111/j.1151–2916.1962.tb11185.x
- Petrova M.A., Grebenshchikov R.G. Specific features of the phase formation in the titanate systems Ln₂TiO₅-Ln'₂TiO₅ (Ln = La, Gd, Tb, Er; Ln' = Tb, Lu). Glass Phys. Chem., 2008, vol. 34, no 5, pp. 603–607. http://dx.doi. org/10.1134/S1087659608050118
- 19. Bondar I.A., Vinogradova I.A. *Phase equilibria in the lanthanu moxide-alumina system*. New. AN SSSR. Chem. Series., 1964, no 5, pp. 785–790. (*in Russian*).
- 20. Mizuno M., Berjoan R., Coutures J.P., Foex M. *Phase diagram of the system* Al_2O_3 - La_2O_3 atelevated temperatures. J. Ceram. Soc. Jap., 1974, vol. 82, no 12, pp. 631–636.
- Ropp R.C., Libovitz G.G. *The nature of the alumina-rich phase in the system La₂O₃-Al₂O₃*. J. Am. Ceram. Soc., 1978, vol. 61, no 11–12, pp. 473–475. http://dx.doi.org/10.1111/j.1151–2916.1978.tb16119.x
- Yamaguchi O., Sagiura K., Mitsui A. M., Shimizu K. New compound in the system La₂O₃-Al₂O₃. J. Am. Ceram. Soc., 1985, vol. 68, no 2, pp. 44–45. http://dx.doi.org/10.1111/j.1151–2916.1985.tb15278.x