УДК 544.[228+344.3]:546.[57+81+18]'221

О. П. Березнюк, І. Д. Олексеюк, І. І. Петрусь, О. В. Смітюх Кафедра хімії та технологій

Східноєвропейський національний університет імені Лесі Українки, пр. Волі 13, 43025 м. Луцьк, Україна E-mail: Petruska2409@gmail.com

СИСТЕМА $Ag_2S - SnS_2 - P_2S_5$

Квазіпотрійна система $Ag_2S - SnS_2 - P_2S_5$, характеризується квазібінарними перерізами між вихідними та тернарними фазами. На квазібінарному перерізі $Ag_7PS_6 - Ag_8SnS_6$ встановлено існування твердих розчинів $Ag_{7+x}P_{1-x}Sn_xS_6$ (x =0÷0,31) та $Ag_{8-x}Sn_{1-x}P_xS_6$ (x =0÷0,21). Заміна атомів P на суміш атомів [Ag+Sn] в α -твердому розчині призводить до зростання параметрів ґратки, заміна атомів S патомами P в β -твердому розчині супроводжується зменшенням параметрів ґратки. Зміна параметрів гратки не ϵ прямолінійною та характеризується позитивним відхиленням від правила Вегарда. У роботі описана кристалічна структура двох фаз $Ag_{7,31}P_{0,69}Sn_{0,3}S_6$ (a = 10.526(1) Å, ПГ (No 198) $P2_1$ 3) та $Ag_{7,8}Sn_{0,8}P_{0,2}S_6$ (a = 15.205(3) Å, b = 7.527(1) Å, c = 10.663(2) Å; ПГ (No 33) $Pna2_1$), які представляють собою крайні склади твердих розчинів.

Ключові слова: діаграма стану, кристалічна структура, твердий розчин, квазібінарна система.

вступ

Квазіпотрійна система за участю вихідних сполук Ag_2S , SnS_2 та P_2S_5 є перспективною для дослідження. Насамперед тому, що вихідні компоненти мають досить широкий спектр властивостей. Зокрема, у халькогенідах Ag виявлено значну рухливість заряду, окрім того вони можуть виступати суперіонними речовинами. Сульфід Аргентуму – цінний матеріал для електрооптичних приладів.[1].

У квазібінарних ситемах – Ag₂S-SnS₂ та Ag₂S-P₂S₅, – що виступають бічними для вихідної квазіпотрійної, утворюється ряд тернарних сполук: Ag₇PS₆ (*a* = 10.36 Å [2], Тп.п = 539 K); Ag₃PS₄ (*Pmn*2₁, *a* = 7.65, *b* = 8.68, *c* = 6.509 Å) [3]; Ag₄P₂S₇ (*B*2/*b*, *a* = 10.778(5), *b* = 16.211(8), *c* = 6.534(3) Å, γ = 106.8(1)° [4], Тп.п = 700 K); AgPS₃ (*C*2/*m*, *a* = 11.238, *b* = 7.018(8), *c* = 6.742 Å, β = 126.96°) [5]; Ag₈SnS₆ (*Pna*2₁, *a* = 15.298(2), *b* = 7.548(2), *c* = 10.699(2) [6], Тп.п = 455 K); Ag₂SnS₃ (*B*2/*b*, *a* = 8.03, *b* = 10.815, *c* = 5.085Å, β = 108.28(1)°[7,8]); Ag₂Sn₂S₅ (*P*4₁32, *a* = 10.8013 Å [9]).

Завданням дослідження є отримання складних халькогенідів на основі Ag, P, Sn з метою пошуку перспективних матеріалів з наперед заданими властивостями.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

Наважки зразків для дослідження були підготовлені з високочистих простих речовин: срібло – 99,99 мас. %, олово – 99,999 мас. %, фосфор – 99,998 мас. %, сірка – 99,997 мас. % у вакуумованих до залишкового тиску 1,33^{-10⁻²} Па кварцових ампулах. Синтез полікристалічних зразків здійснювався у печах шахтного типу СШОЛ. Сульфурвмісні зразки спочатку нагрівали до температури 670 К зі швидкістю 20 К/год, за цієї температури проводився відпал протягом доби, а

потім нагрівали до максимальної температури 1170 К. Після 6 годин витримки, температуру поступово понижували (~10 К/год) до 420 К. При цій температурі проводили відпал зразків протягом 500 годин, після чого ампули охолоджували у режимі виключеної печі.

Рентгенівські порошкограми отримували на дифрактометрі DRON-4-13 (СиКа – випромінення, $10^{\circ} \le 2\theta \le 90^{\circ}$, крок зйомки 0.05°, експозиція у кожній точці 5 с) і рахували їх за допомогою пакету програм WINCSD [10].

РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

За результатами рентгенофазового аналізу побудовано ізотермічний переріз квазіпотрійної системи $Ag_2S-SnS_2-P_2S_5$ за температури 420 К. На перерізі існує 10 однофазних, 17 – двофазних та 8 трифазних полів (рис. 1).

Рис. 1. Ізотермічний переріз системи $Ag_2S - SnS_2 - P_2S_5$ за температури 420 К.

Fig. 1. The isotermal section of system $Ag_2S - SnS_2 - P_2S_5$ at 420 K.

Окремо досліджувався переріз $Ag_7PS_6 - Ag_8SnS_6$ на предмет існування твердих розчинів на основі вихідних сполук. За результатами диференційно-термічного аналізу побудовано діаграму стану системи $Ag_7PS_6 - Ag_8SnS_6$ (рис. 2). Обидві сполуки Ag_7PS_6 і Ag_8SnS_6 володіють поліморфізмом. Перехід між модифікаціями спостерігається за температур 539 К для Ag_7PS_6 [3] і 455 К для Ag_8SnS_6 [8]. Проте необхідно зазначити, що температури фазових перетворень на діаграмі не показані.

Система Ag₇PS₆ – Ag₈SnS₆ належить до евтектичного типу з утворенням граничних твердих розчинів на основі вихідних компонентів із координатами евтек-

Рис. 2. Фазова діаграма стану системи $Ag_7PS_6-Ag_8SnS_6$ $1-L,2-L+\alpha,3-L+\beta,4-\alpha,5-\alpha',6-\alpha+\beta,7-\alpha'+\beta',8-\beta,9-\beta'$

Fig. 2. The phase diagram of system $Ag_7PS_6 - Ag_8SnS_6$ 1 - L, 2 - L + α , 3 - L + β , 4 - α , 5 - α ', 6 - α + β , 7 - α ' + β ', 8 - β , 9 - β '

тичної точки 1010 К, 35 мол. % Ag₈SnS₆. Протяжність твердого розчину Ag_{7+x}P_{1-x}Sn_xS₆(x = 0,31) на основі Ag₇PS₆ становить 31 мол. % Ag₈SnS₆, а β -твердого розчину (Ag_{8-x}Sn_{1-x}P_xS₆(x = 0÷0,21) на основі Ag₈SnS₆ – 21 мол. % Ag₈SnS₆. Заміна атомів Р на суміш атомів [Ag+Sn]в α -твердому розчині призводить до зростання параметрів ґратки. Заміна ж атомів Sn атомами Р в β -твердому розчині супроводжується зменшенням параметрів ґратки. Причому характер є не прямолінійним, а описується позитивним відхиленням від правила Вегарда (рис. 3).

Рис. 3. Зміна параметрів елементарної гратки у твердих розчинах системи $Ag_7PS_6 - Ag_8SnS_6$. Fig. 3. Variation of the cell parameters within the solid solution range in system $Ag_7PS_6 - Ag_8SnS_6$.

Система $Ag_{,S} - SnS_{,} - P_{,S}_{,}$

Також було проаналізовано структуру двох окремих складів з твердих розчинів. Кристалічна структура фази $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ вивчена методом порошку і є окремим складом твердого розчину на основі сполуки Ag_7PS_6 (a = 10,3944 Å), яка кристалізується в структурному типі Ag_7PS_6 ($\Pi\Gamma P2_13$).

Тетрарна фаза $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ утворюється шляхом заміщення атомів P атомами Sn. У результаті отримуємо дефектну, відносно позиції атомів P, позицію 4*a*, яку заселяє суміш атомів [Ag+Sn]. У табл. 1 представлено результати розрахунку кристалічної структури фази $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$. На рис. 4 представлена експериментальна, теоретична дифрактограми фази $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ та різницева між ними.

Таблиця 1

Результати розрахунку кристалічної структури окремого складу твердого розчину

Table 1

The results of the calculation of the crystal structure of the individual composition of the solid solution series

Параметри	$Ag_{7,31}P_{0,69}Sn_{0,31}S_6$
Просторова група	(No 198) P2 ₁ 3
a (Å)	10.526(1)
Об'єм комірки (Å ³)	1166.4(4)
Кількість атомів в комірці	57.3
Густина (обрахована) (г/см ³)	4.1409(7)
Адсорбційний коефіцієнт (1/см)	1140.25
Випромінювання і довжина хвилі (нм)	CuKα 0.154185
Дифрактометр	ДРОН-4-13
Спосіб обрахунку	Повнопрофільний
Програма для обрахунку	CSD
Кількість атомних позицій	10
Кількість вільних параметрів	9
2Θ та sin Θ/λ (макс.)	90; 0.459
R	0.1060
	0.3121
Фактор шкали	1.084(8)

В табл. 2 подані уточнені координати та параметри зміщення атомів у структурі фази $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$

Таблиця 2

Координати та ізотропні параметри теплового коливання атомів у структурі

Table 2

Coordinates of atoms and isotropic thermal displacement parameter	'S
in the Ag _{7.31} P _{0.69} Sn _{0.31} S ₆ structure	

$Ag_{7,31}P_{0,69}Sn_{0,31}S_6$						
Атоми	ПСТ	x/a	у/b	z/c	$B_{_{130}}\Box 10^2 ({ m Hm^2})$	
Ag1	4(<i>a</i>)	0.3917(7)	Х	Х	0.9(5)	
Ag2	12(<i>b</i>)	0.2437(7)	0.0302(4)	0.2520(7)	0.91(14)	
Ag3	12(<i>b</i>)	0.3322(6) 0.8161(7)		0.9784(5)	0.8(2)	
P*	4(<i>a</i>)	1.007(2)	Х	Х	0.7(7)	
Sn*	4(<i>a</i>)	1.003(2)	Х	Х	0.6(5)	
Ag4*	4(<i>a</i>)	1.003(2)	Х	Х	0.8(5)	
S1	4(<i>a</i>)	0.529(3)	Х	Х	0.9(1)	
S2	4(<i>a</i>)	0.8883(14)	Х	Х	0.6(5)	
S3	4(<i>a</i>)	0.2508(15)	Х	Х	0.6(4)	
S4	12(<i>b</i>)	0.1186(13)	0.8742(12)	0.1042(11)	0.9(3)	

* Occupations P1 0.690* P; Sn1 0.155(1) Sn; Ag4 0.155(1) Ag

Fig. 4. Experimental and calculated diffraction patterns of the $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ sample and their difference.

В структурі тетрарної фази $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ атоми Ag займають ПСТ 4*a* та 12*b* відповідно. Позиція 4*a* (x = 1.007) заселена атомами Р. Коефіцієнт заповнення цієї позиції становить 0,69 частки. Суміш атомів Ag (I) та Sn(IV) частково заміщають атоми Р, причому локалізуються вони в деформованій позиції 4*a*. Атоми S1, S2 і S3 локалізовані в ПСТ 4*a*, атоми S4 – у 12*b*. Координаційне оточення катіонів наступне: Ag1 має координаційне оточення з атомів Сульфуру у формі гантелі [S₃-Ag₁-S₁] (рис. 7*a*), Ag2 – центрований в моноедрі трикутника [2S₄-Ag₂-S₃] (рис. 7*b*); Ag3 координований в тетраедр [Ag₃S₁S₂S₃S₄] (рис. 7*b*), атоми [Ag/Sn+P] мають тетраедричне оточення із атомів Сульфуру: {[Ag/Sn+P]S₂3S₄] (рис. 7*c*). У відповідному положенні координат атоми катіонів утворюють умовну гексагональну площину, центровану атомами Ag1, що можна побачити на рис. 5. Елементарна комірка фази Ag_{7,31}P_{0.69}Sn_{0.31}S₆ представлена на рис. 6. Атоми Сульфуру утворюють між собою ікосаедр в тетрарній фазі Ag_{7,31}P_{0.69}Sn_{0.31}S₆.

Рис. 5. Укладка багатогранників атомів Ag, P, Sn.

Рис. 6. Елементарна комірка кристалічної структури $Ag_{7.31}P_{0.69}Sn_{0.31}S_6$.

Fig. 6. Unit cell in the $Ag_{7.31}P_{0.69}Sn_{0.31}S_6$ structure.

Рис. 7. Коодинаційне оточення атомів Ag1(a), Ag2(d), Ag3(e) [Ag/Sn+P](c)

Fig. 7. Coordination of atoms Ag1(a), Ag2(6), Ag3(e) [Ag/Sn+P](c)

Кристалічна структура фази Ag_{7.8}Sn_{0.8}P_{0.2}S₆ вивчена методом порошку і є окремим складом твердого розчину на основі сполуки Ag₈SnS₆ (ПГ *Pna*2₁; *a* = 15,298(2) Å: *b* = 7,548(2) Å; *c* = 10,699(2) Å). Тетрарна фаза Ag_{7.8}Sn_{0.8}P_{0.2}S₆ утворюється шляхом заміщення атомів Sn атомами P. У результаті отримуємо ПСТ 4*a*, в якій локалізована суміш атомів [0.8Sn+0.2P]. У табл. 3 представлено результати розрахунку кристалічної структури фази Ag_{7.8}Sn_{0.8}P_{0.2}S₆.

Таблиця 3

Результати розрахунку кристалічної структури окремого складу твердого розчину

Table 3

The results of the calculation of the crystal structure of the individual composition of the solid solution series

Параметри	$Ag_{7.8}Sn_{0.8}P_{0.2}S_6$
Просторова група	(No 33) <i>Pna2</i> ₁
<i>a</i> (Å)	15.205(3)
b (Å)	7.527(1)
c (Å)	10.663(2)
Об'єм комірки (Å ³)	1220.3(6)
Кількість атомів в комірці	59.3
Густина (обрахована) (г/см3)	6.189(3)
Адсорбційний коефіцієнт (1/см)	1229.51
Випромінювання і довжина хвилі (нм)	CuKa 0.154185
Дифрактометр	ДРОН-4-13
Спосіб обрахунку	Повнопрофільний
Програма для обрахунку	CSD
Кількість атомних позицій	16
Кількість вільних параметрів	9
2Θ та sin Θ/λ (макс.)	90; 0.459
R _I	0.0692
R _p	0.1964
Фактор шкали	1.234(8)

На рис. 9 представлено експериментальний, теоретичний профілі дифрактограм та різницевий між ними для фази $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$. В табл. 4 подані уточнені координати та параметри зміщення атомів у структурі фази $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$.

Таблиця 4

Координати та ізотропні параметри теплового коливання атомів у структурі

Table 4

$Ag_{7,8}P_{0,8}Sn_{0,2}S_{6}$						
Атоми	ПСТ	x/a	<i>y/b</i>	z/c	$B_{_{130}}$ ·10 ² (HM ²)	
Ag1	4(<i>a</i>)	0.1229(5)	0.2145(11)	0.3832(11)	1.2(2)	
Ag2	4(<i>a</i>)	0.0570(5)	0.0570(5) 0.2270(11) 0.82		1.1(2)	
Ag3	4(<i>a</i>)	0.4328(7)	0.4328(7) 0.0556(12) 0.02		1.1(2)	
Ag4	4(<i>a</i>)	0.2779(6)	0.5015(13)	0.0819(9)	1.0(2)	
Ag5	4(<i>a</i>)	0.4166(6)	0.0818(12)	0.6982(10)	1.1(2)	
Ag6	4(<i>a</i>)	0.2771(6)	0.3788(12)	0.6837(10)	1.0(2)	
Ag7	4(<i>a</i>)	0.0181(6)	0.0078(15)	0.5954(10)	1.1(2)	
Ag8	4(<i>a</i>)	0.2550(8)	0.1445(15)	0.9100(12)	1.0(3)	
Sn	4(<i>a</i>)	0.3758(6)	0.2368(13)	0.3597(14)	0.7(2)	
Р	4(<i>a</i>)	0.375(6)	0.250(14)	0.371(15)	0.8(3)	
S1	4(<i>a</i>)	0.118(2)	0.483(4)	0.970(3)	0.1(8)	
S2	4(<i>a</i>)	-0.000(3)	0.233(5)	0.215(3)	0.7(7)	
S3	4(<i>a</i>)	0.371(2)	0.479(4)	0.479(3)	1.1(8)	
S4	4(<i>a</i>)	0.252(3)	0.236(3)	0.219(3)	0.7(7)	
S5	4(<i>a</i>)	0.388(2)	0.314(3)	0.873(4)	0.7(7)	
S6	4(<i>a</i>)	0.117(2)	0.277(4)	0.610(4)	0.6(6)	

Coordinates	of atoms	and iso	otrop	oic tl	hern	nal displacement	parameters
	in	the An	р	Sn	S	structure	

* Occupations Ag8 0.81(1) Ag; Sn1 0.81(8) Sn; P1 0.19 (7) P

В структурі тетрарної фази $Ag_{7,8}Sn_{0.8}P_{0.2}S_6$ всі атоми займають ПСТ 4*a* відповідно. Позиція 4*a* (*x* = 0.375) заселена сумішшю атомів [0.19P + 0.81Sn]. Коефіцієнт заповнення позиції 4*a* (*x* = 2550) становить 0,81 частки. Координаційне оточення катіонів наступне: Agl має координаційне оточення з чотирьох атомів Сульфуру [Ag₁S₂S₄S₅S₆] (рис. 12*a*), Ag2 – центрований в тетраедрі [Ag₂S₁S₃S₅S₆] (рис. 12*b*); Ag3 координований в тетраедр [Ag₃S₁S₂S₅S₆] (рис. 12*b*), Ag4 – в моноедрі [Ag₄S₁S₄S₆] (рис. 12*c*), Ag5 – в моноедрі [Ag₅S₁S₂S₅] (рис. 12*b*), Ag6 має тетраедричне оточення з атомів Сульфуру [Ag₆S₃S₄S₅S₆] (рис. 12*b*), Ag7 скоординований в центрі моноедра [Ag₇S₃S₃S₆] (рис. 12*c*). Атоми [Sn+P] мають тетраедричне оточення із атомів Сульфуру {[Sn+P]S₁S₂S₅S₄] (рис. 12*i*). У площині *ac* укладка багатогранників атомів катіонів описується шарами, ще чергуються пустотами (рис. 10). Укладку катіонних багатогранників в 3D-моделі зображено на рис. 8. Елементарна комірка фази $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$ представлена на рис. 11.

Рис. 8. Укладку катіонних багатогранників в 3D-моделі в елементарній комірці.

Fig. 8. Laying cationic polyhedrons in 3D models in the unit cell.

Рис. 9. Експериментальна, розрахована та різницева дифрактограми зразка $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$.

Fig. 9. Experimental and calculated diffraction patterns of the $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$ sample and their difference.

Система $Ag_{,S} - SnS_{,} - P_{,S}_{,}$

Рис. 10. Укладка катіонних багатогранників у площині *ас*.

Рис. 11. Елементарна комірка кристалічної структури $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$.

Fig. 11. Unit cell in the $Ag_{7,8}Sn_{0,8}P_{0,2}S_6$ structure

Рис. 12. Коодинаційне оточення атомів Ag1(*a*), Ag2(*b*), Ag3(*b*), Ag4(*c*), Ag5(*d*), Ag6(*ж*), Ag7(3), Ag8(*c*), [Sn+P](*i*)

Fig. 12. Coordination of atoms Ag1(*a*), Ag2(δ), Ag3(*b*), Ag4(ϵ), Ag5(∂), Ag6(κ), Ag7(β), Ag8(ϵ), [Sn+P](*i*)

висновки

Використовуючи метод РФА проведено фазовий аналіз та на основі отриманих результатів побудовано ізотермічний переріз квазіпотрійної системи $Ag_2S-SnS_2-P_2S_5$ при температурі 420 К. У системі встановлено існування твердих розчинів на перерізі $Ag_7PS_6 - Ag_8SnS_6$: $Ag_{7+x}P_{1-x}Sn_xS_6$ (x =0÷0,31) та $Ag_{8-x}Sn_{1-x}P_xS_6$ (x = 0÷0,21). За результатами ДТА побудовано систему $Ag_7PS_6 - Ag_8SnS_6$, яка характеризується евтектичним типом

взаємодії із координатами нонваріантної евтектичної точки – 1010 К, 35 мол. % Ag_8SnS_6 . Заміна атома з меншим радіусом на більший спричиняє збільшення параметрів гратки. Окремо вивчено кристалічну структуру двох окремих складів твердих розчинів: $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$ (ПГ $Pna2_1$, a = 15,205(3) b = 7,527(1), c = 10.663(2) Å) та $Ag_{7.31}P_{0.69}Sn_{0.31}S_6$ (ПГ $P2_1$ 3, a = 10,526(1) Å). У подальшій роботі планується дослідження цих матеріалів на предмет фізичних властивостей.

СПИСОК ЛІТЕРАТУРИ

- Шлапа Ю.Ю., Мазурець І.І., Олексеюк І.Д. Фазові рівноваги в системі Ag₂S ZnS P₂S₅ за 500 К // Актуальні питання сучасної науки. Матеріали міжнародної науково-практичної конференції (м. Одеса, 25-26 квітня 2014 року). – Херсон : Видавничий дім «Гельветика». – 2014. – 128 с. ISBN 978-617-7041-63-0
- Toffoli P., Khodadad P. Chimie Minerale.-Sur les composes Ag₇PSe₆ // C. R. Seances Acad. Sci., Ser. C. 1978. – P. 349-351.
- Andrae H. Blachnik R. Metal sulphide tetraphosphorusdekasulphide phase diagrams // J. Alloys Comp. 1992. – Vol. 189 – P. 209-215. https://doi.org/ 10.1016/0925-8388(92)90709-I
- 4. Par Patrick Toffoli, Parviz Khodadat et NoËl Rodier. Structure Cristalline du Pyrothiophosphate d'Argent, Ag₄P₂S₇// Acta Cryst. 1977. N B.33. P. 1492-1494. https://doi.org/10.1107/S0567740877006360
- Toffoli P., Khodadad P., Rodies N. Structure Cristalline de 1' Hexathioclimetaphosphate d' Argent, Ag₂P₂S₆ // Acta Cryst. B. – 1978. – Vol. 34. – P. 3561-3564.
- Huseynov G.M. Preparation of Ag₈SnS₆ compound indimethylformamide medium // Bulletin of Tomsk St. Univ. – 2016. – P. 29-33.
- Belandria E., Avila R., Fernández B.J. Sunthesis and characterizition of the eernary compound Ag₂SnS₃ // Jpn. J. Appl. Phys. – 2000. – Vol. 39, N S1. – P. 132-133. https://doi.org/10.7567/jjaps.39s1.132
- Кохан О.П. Взаємодія в системах Ag₂X–B^{IV}X₂ (B^{IV} Si, Ge, Sn; X S, Se) і властивості сполук: автореф. дис... канд. хім. наук: 02.00.01. // М-во освіти і науки України, Ужгородський національний університет. Ужгород. – 1996. – 21 с.
- Amiel O., Frankel D.C., Wada H. Crystal structure and conductivity of the new superionic conductors Ag₄Zr₃S₈ and Ag₁₈Sn₃S₈ // J. Solid State Chem. – 1995. – Vol. 116. – P. 409-421. https://doi.org/10.1006/jssc.1995.1234
- Aksel rud L, Grin' Yu.N. WINCSD: Software package for crystallographic efficient (Version 4) // J. Appl. Cryst. – 2014. – N 47. – P. 803-805. https://doi.org/10.1107/s1600576714001058

Стаття надійшла до редакції 04.09.2020

О. П. Березнюк, И. Д. Олексеюк, И. И. Петрусь, А. В. Смитюх

Кафедра химии и технологий Восточноевропейский национальный университет имени Леси Украинки, пр. Воли 13, 43025 г. Луцк, Украина E-mail: Petruska2409@gmail.com

СИСТЕМА $Ag_2S - SnS_2 - P_2S_5$

Квазитройная система $Ag_2S-SnS_2-P_2S_5$ характеризуется квазибинарними сечениями между исходными и тернарными фазами. На квазибинарном сечении Ag_7PS_6 – Ag_8SnS_6 установлено существование твердых растворов $Ag_{7+x}P_{1-x}Sn_xS_6$ (x =0÷ 0,31) и $Ag_{8-x}Sn_{1-x}P_xS_6$ (x = 0÷0,21). Замена атомов Р атомами смеси [Ag+Sn] в α-твердом растворе обозначается увеличением параметров кристалической решетки. Замена атомов Sn атомами Р в β -твердом растворе приводит к уменьшению параметров кристалической решетки. Причем характер не является прямолинейным, а описывается положительным отклонением от правила Вегарда. В работе описана кристаллическая структура двух фаз $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ (a = 10.526(1) Å, ПГ (No 198) $P2_13$) и $Ag_{7,8}Sn_{0.8}P_{0.2}S_6$ (a = 15.205(3) Å, b = 7.527(1) Å, c = 10.663(2) Å; ПГ (No 33) $Pna2_1$), которые представляют собой крайние составы твердых растворов.

Ключевые слова: диаграмма состояния, кристаллическая структура, твердый раствор, квазибинарная система.

O. P. Berezniuk, I. D. Olekseuk, I. I. Petrus', O. V. Smitiukh,

Department of Chemistry and Technologies Eastern European National University, Voli Ave 13, 43025 Lutsk, Ukraine E-mail: Petruska2409@gmail.com

SYSTEM $Ag_2S - SnS_2 - P_2S_5$

The quasiternary system $Ag_2S - SnS_2 - P_2S_5$ is characterized by quasi-binary sections between the binary and ternary phases. The existence of solid solutions $Ag_{7+x}P_{1-x}Sn_xS_6$ (x =0÷ 0,31) and $Ag_{8-x}Sn_{1-x}P_xS_6$ (x = 0÷0,21) was established on the quasi-binary section $Ag_7PS_6 - Ag_8SnS_6$. Replacement of P atoms by a mixture of [Ag + Sn] atoms in α -solid solution leads to an increase in the lattice parameters. The replacement of Sn atoms by P atoms in the β -solid solution is accompanied by a decrease in the lattice parameters. Moreover, the character is not linear, but is described by a positive deviation from Vegard's rule. The crystal structure of two phases $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ (a = 10.526(1) Å, SG (No 198) $P2_1$ 3) Ta $Ag_{7.8}Sn_{0.8}P_{0.2}S_6$ (a = 15.205(3) Å, b = 7.527(1) Å, c = 10.663(2) Å; SG (No 33) $Pna2_1$) which are the final compositions of solid solutions.

The tetra phase $Ag_{7,31}P_{0.69}Sn_{0.31}S_6$ is formed by replacing P atoms with Sn atoms. As a result, we obtain a defective, relative to the position of the atoms P, position 4a, which is inhabited by a mixture of atoms [Ag + Sn]. The coordination environment of cations is represented by tetrahedra, monohedra and dumbbells: Ag1 has a coordinating environment of sulfur atoms in the form of a dumbbellhas $[S_3-Ag_1-S_1]$, Ag2 is centered in the monohedron of the triangle $[2S_4-Ag_2-S_3]$; Ag3 is coordinated into a tetrahedron $[Ag_3S_1S_2S_3S_4]$. The atoms [Ag / Sn + P] have a tetrahedral environment of sulfur atoms: $\{[Ag/Sn+P]S_23S_4\}$. The tetra phase $Ag_{7,8}Sn_{0.8}P_{0.2}S_6$ is formed by replacing Sn atoms with P. atoms. As a result, we obtain position 4a, in which a mixture of atoms [0.8Sn + 0.2P] is localized. The coordination environment of cations is represented by tetrahedra, monohedra and dumbbells: Ag1 has a coordination environment of four sulfur atoms $[Ag_1S_2S_4S_6]$, Ag2 is centered in a tetrahedron $[Ag_2S_1S_3S_5S_6]$; Ag3 is coordinated in a tetrahedra and dumbbells: Ag1 has a coordination environment of four sulfur atoms $[Ag_1S_2S_4S_5S_6]$, Ag2 is centered in a tetrahedron $[Ag_2S_1S_3S_5S_6]$; Ag3 is coordinated in a tetrahedra $[Ag_1S_2S_4S_5S_6]$, Ag2 is centered in a tetrahedron $[Ag_2S_1S_3S_5S_6]$; Ag3 is coordinated in a tetrahedra $[Ag_1S_1S_2S_5S_6]$, Ag4 – in a monohedron $[Ag_2S_1S_3S_4S_6]$; Ag5 – in a monohedron $[Ag_2S_1S_2S_3]$, Ag6 has a tetrahedral environment of sulfur atoms $[Ag_6S_3S_4S_5S_6]$, Ag7 is coordinated in the center of the monohedron $[Ag_7S_3S_3S_6]$, Ag8 forms a dumbbell shape with Sulfur atoms $[S_3-Ag_8-S_5]$. [Sn + P] atoms have a tetrahedral environment of Sulfur atoms $\{[Sn+P]S_1S_2S_3S_4\}$.

Key words: phase diagram, crystal structure, solid solution, quasi-binary system.

REFERENCES

- Shlapa Iu.Iu., Mazurets I.I., Olekseiuk I.D. Fazovi rivnovahy v systemi Ag₂S ZnS P₂S₅ za 500 K. Aktualni pytannia suchasnoi nauky. Materialy mizhnarodnoi naukovo-praktychnoi konferentsii (m. Odesa, 25-26 kvitnia 2014 roku). Kherson, Vydavnychyi dim «Helvetyka», 2014, p. 128. (*in Ukrainian*)
- Toffoli P., Khodadad P. Chimie Minerale.-Sur les composes Ag₇PSe₆. C. R. Seances Acad. Sci., Ser. C, 1978, pp. 349-351.
- Andrae H. Blachnik R. Metal sulphide tetraphosphorusdekasulphide phase diagrams // J. Alloys Comp., 1992, vol. 189, pp. 209-215. https://doi.org/10.1016/0925-8388(92)90709-I
- Par Patrick Toffoli, Parviz Khodadat et NoËl Rodier. Structure Cristalline du Pyrothiophosphate d'Argent, Ag₄P,S₇. Acta Cryst. 1977, no B.33, pp. 1492-1494. https://doi.org/10.1107/S0567740877006360
- Toffoli P., Khodadad P., Rodies N. Structure Cristalline de l' Hexathioclimetaphosphate d' Argent, Ag₂P₂S₆. Acta Cryst. B., 1978, vol. 34, pp. P. 3561-3564.
- Huseynov G.M. Preparation of Ag₈SnS₆ compound indimethylformamide medium // Bulletin of Tomsk St. Univ., 2016, pp. 29-33.
- Belandria E., Avila R., Fernández B. J. Sunthesis and characterizition of the eernary compound Ag₂SnS₃. Jpn. J. Appl. Phys., 2000, vol. 39, no S1, pp. 132-133. https://doi.org/10.7567/jjaps.39s1.132
- Kokhan O.P. Vzaiemodiia v systemakh Ag₂X–B^WX₂ (B^W–Si, Ge, Sn; X–S, Še) i vlastyvosti spoluk: avtoref. dys... kand. khim. nauk: 02.00.01. M-vo osvity i nauky Ukrainy, Uzhhorodskyi natsionalnyi universytet. Uzhhorod, 1996, p. 21. (in Ukrainian)
- Amiel O., Frankel D.C., Wada H.. Crystal structure and conductivity of the new superionic conductors Ag₂Zr₃S₈ and Ag₃₈Sn₃S₈. J. Solid State Chem., 1995, vol. 116, pp. 409-421. https://doi.org/10.1006/jssc.1995.1234
- Grin Y., Akselrud L. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Cryst, 2014, no 47, pp. 803-805. https://doi.org/10.1107/s1600576714001058