УДК 544.344.3(546.561+546.682+546.15+546.22)

В. С. Козак, І. А. Іващенко, І. Д. Олексеюк

Східноєвропейський національний університет імені Лесі Українки, просп. Волі 13, 43025 м. Луцьк, Україна E-mail: inna.ivashchenko05@gmail.com

ФАЗОВІ РІВНОВАГИ В КВАЗІПОТРІЙНІЙ СИСТЕМІ Cu,S – In,S₃ – CuI

Методами рентгенофазового та диференційно-термічного аналізів досліджено фазові рівноваги у квазіпотрійній системі $Cu_2S - In_2S_3 - CuI$. Побудовано ізотермічний переріз при 770 K, дві діаграми стану $In_2S_3 - CuI$ та $CuInS_2 - CuI$, три політермічних перерізи $CuIn_5S_8 - CuIn_2S_3I$, $CuInS_2 - CuIn_2S_3I$, $CuInS_2 - CuI_3SI'$ та проекцію поверхні ліквідуса системи. Зафіксоване існування тетрарної сполуки $CuIn_2S_3I$ з кубічною структурою, пр. гр. *F-43m*, *a*=0,58013(1) нм. Протяжність є-твердих розчинів на її основі складає 48-54 мол. % CuI.

Ключові слова: фазові рівноваги, ізотермічний переріз, проекція поверхні ліквідусу

Дослідження складних систем на основі бінарних сполук, які мають практичне застосування, проводиться з метою пошуку нових напівпровідникових матеріалів. Система Cu₂S – In₂S₃ – CuI досліджувалась саме з такою метою. Відомо, що у системі Cu₂S – In₂S₃ існують дві тернарні сполуки: CuInS₂, CuIn₅S₈. Сполука CuInS₂ володіє конгруентним типом плавлення та існує у трьох поліморфних модифікаціях: α-CuInS₂ існує нижче 1253 К, структурний тип халькопіриту, пр. гр. *I-42d a*=0,5523(3) нм, *c*=1,132(9) нм, β-CuInS₂, 1253-1318 К, структурний тип сфалериту, пр. гр. *F-43m, a*=0,551 нм [1, 2] та γ-CuInS₂, 1318-1370K, структурний тип вюрциту, пр. гр. *P6₃mc, a*=0,390652(13) нм, *c*=0,642896(23) нм [3]. Сполука CuIn₅S₈ кристалізується в структурному типі оберненої шпінелі, пр. гр. Fd3m, a=1,0685(3) нм [4, 5]. Система Cu₂S – CuI досліджена авторами [6]. Вона належить до перитектичного типу діаграм. Система In₂S₃ – CuI не досліджена у повному концентраційному інтервалі, проте у літературі [7] говориться, що у подібних системах утворюються тетрарні сполуки складу AB₂X₃Y (A=Cu, Ag; B=In; X=S, Se, Te; Y=Cl, Br, I), але про наявність сполуки CuIn₂S₁ не вказується.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

Зразки стехіометричного складу масою 1 г готували сплавлянням розрахованих і зважених на вагах моделі ВЛР – 200 простих Си, Іп, S чистотою не менше 99,99 мас.% та свіжо отриманої бінарної СuI у вакуумованих до залишкового тиску 0.1 Ра і запаяних кварцевих ампулах в печі шахтного типу з системою регулювання і підтримки температури. Сірка попередньо очищувалася двохразовою вакуумною перегонкою. Синтезували зразки за таким режимом: нагрів до 670 К із швидкістю 10 К/год, витримка 48 годин; нагрів до 920 К, витримка 48 год; нагрів до 1020 К, витримка 48 годин. Охолодження зі швидкістю 20 К/год до 770 К. Відпал протягом 300 годин і охолодження в режимі закалки в 20%-ний сольовий водний розчин. Для встановлення фазового складу синтезованих взірців використовували теоретично розраховані порошкограми вихідних бінарних, тернарних та тетрарної сполук. Рентгенофазовий аналіз синтезованих сплавів проводили за дифрактограмами одержаними на ДРОН 4-13, СиКα-випромінювання в межах $2\Theta = 10^{\circ} - 70^{\circ}$, крок сканування – 0,05°, експозиція 4 с у кожній точці. Запис кривих ДТА проводили з використанням Pt/Pt-Rh комбінованої термопари на установці, що складалася з печі «Термодент» і двохкоординатного самописця Н 307-1 XY.

РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

Діаграма стану системи In₂S₃ – CuI

Діаграма стану побудована за результатами РФА та ДТА (рис. 1). Встановлено існування проміжної тетрарної сполуки CuIn₂S₃I з кубічною структурою, пр. гр.

Рис. 1. Діаграми стану системи $In_2S_3-CuI:$ 1-L, $2-L+\delta,$ $3-L+\epsilon,$ $4-L+\eta,$ $5-\eta,$ $6-\delta,$ $7-\delta+\delta',$ $8-\delta+\epsilon,$ $9-\epsilon,$ $10-\epsilon+\eta,$ $11-\delta',$ $12-\delta'+\epsilon$

Fig. 1. The phase diagram of the In_2S_3-CuI system: $1-L,\,2-L+\delta,\,3-L+\epsilon,\,4-L+\eta,\,5-\eta,\,6-\delta,\,7-\delta+\delta',\,8-\delta+\epsilon,\,9-\epsilon,\,10-\epsilon+\eta,\,11-\delta',\,12-\delta'+\epsilon$

F-43*m*, *a*=0,58013(1) нм. При 770 К область її гомогенності складає 48-54 мол. % СuI. Сполука утворюється при 1198 К за перитектичною реакцією L_{p1} + $\delta \leftrightarrow \varepsilon$. Горизонталь при 1133 К відповідає перитектичному процесу L_{p2} + $\varepsilon \leftrightarrow \eta$. При 933 К проходить евтектоїдний розпад δ -твердих розчинів на основі BTM-In₂S₃ на δ' -тверді розчини на основі HTM-In₂S₃ з тетрагональною структурою, пр. гр. I-4/*amd* та є-тверді розчини на основі $CuIn_2S_3I$. Протяжність граничних твердих розчинів є незначною і становить до 7 мол.% другого компоненту.

Діаграма стану системи CuInS₂ – CuI

За результатами РФА та ДТА побудована діаграма стану системи CuInS₂ – CuI (рис. 2). Ліквідус системи складається з кривих первинної кристалізації α -твердих розчинів BTM-CuInS₂, β -твердих розчинів BTM-2 CuInS₂ зі структурою сфалериту, γ -твердих розчинів HTM-CuInS₂ зі структурою халькопіриту та ϵ -твердих розчинів на основі CuI. Наявність двох поліморфних перетворень при 1318 К ($\alpha \leftrightarrow \beta$) та при 1253 К ($\beta \leftrightarrow \gamma$) обумовлює існування прямих нонваріантних метатектичних процесів $\alpha \leftrightarrow Lm_1 + \beta$ при 1258 К та $\beta \leftrightarrow Lm_2 + \gamma$ при 1233 К. При температурі 923 К проходить нонваріантний перитектичний процес Lp₄ + $\gamma \leftrightarrow$ CuI. При температурі 770 К за даними РФА CuInS₂ проіндесована в тетрагональній структурі *I*-42*d* з параметрами комірки a=0,5523 нм, *c*=1,1329 нм. Розчинність на її основі складає до 3 мол.%. Сполука CuI проіндексована в кубічній структурі *F*-43*m* з параметрами комірки a=6,0488 нм. Протяжність твердого розчину 2 мол.% CuInS₂.

Рис. 2. Діаграми стану системи CuInS $_2$ – CuI: 1 – L, 2 – L + α , 3 – L + β , 4 – L + γ , 5 – L + η , 6 – η , 7 – α , 8 – α + β , 9 – β , 10 – β + γ , 11 – γ , 12 – γ + η

Fig. 2. The phase diagram of the CuInS₂ – CuI system: 1 - L, $2 - L + \alpha$, $3 - L + \beta$, $4 - L + \gamma$, $5 - L + \eta$, $6 - \eta$, $7 - \alpha$, $8 - \alpha + \beta$, $9 - \beta$, $10 - \beta + \gamma$, $11 - \gamma$, $12 - \gamma + \eta$

Політермічний переріз CuInS₂ – CuIn₂S₃I

Ліквідус перерізу представлений кривими первинної кристалізації α -твердих розчинів на основі BTM-CuInS₂, μ -твердих розчинів на основі CuIn₅S₈ та δ -твердих розчинів на основі BTM-In₂S₃ (рис. 3).

Рис. 3. Політермічний переріз $CuInS_2-CuIn_2S_3I$: $1-L,\,2-L+\alpha,\,3-L+\mu,\,4-L+\delta,\,5-L+\delta+\mu,\,6-\mu,\,7-L+\alpha+\beta,\,8-L+\beta,\,9-L+\beta+\mu,\,10-L+\beta+\gamma,\,11-L+\delta+\epsilon,\,12-L+\mu+\epsilon,\,13-L+\gamma,\,14-L+\gamma+\mu,\,15-\gamma,\,16-\gamma+\epsilon,\,17-L+\epsilon$

 $\begin{array}{l} \mbox{Fig. 3. The polythermal section of the } CuInS_2-CuIn_2S_3I{:}\ 1-L,\ 2-L+\alpha,\ 3-L+\mu,\ 4-L+\delta,\ 5-L+\delta+\mu,\ 6-\mu,\ 7-L+\alpha+\beta,\ 8-L+\beta,\ 9-L+\beta+\mu,\ 10-L+\beta+\gamma, \\ 11-L+\delta+\epsilon,\ 12-L+\mu+\epsilon,\ 13-L+\gamma,\ 14-L+\gamma+\mu,\ 15-\gamma\ 16-\gamma+\epsilon,\ 17-L+\epsilon \end{array}$

Переріз перетинає чотири площини нонваріантних процесів, що проходять в підсистемі $\text{CuInS}_2 - \text{In}_2\text{S}_3 - \text{CuI}$ квазіпотрійної системи $\text{Cu}_2\text{S} - \text{In}_2\text{S}_3 - \text{CuI}$. Горизонталь при 1243 К відповідає процесу $L_{15} + \alpha \leftrightarrow \beta + \mu$, який у зразках перерізу завершується зникненням кристалів α-твердих розчинів, тому нижче вказаної горизонталі сплави трьохфазні $\alpha + \beta + \mu$. Вказаний трьохфазний об'єм разом з об'ємом метатектичного процесу $\beta \leftrightarrow \text{Lm}_2 + \gamma$ спускається до горизонталі, що лежить на площині при 1203 К, де відбувається нонваріантний процес $L_{16} + \beta$ $\leftrightarrow \gamma + \mu$. В зразках досліджуваного перерізу він завершується зникненням кристалів β -твердого розчину, тому поле 14 містить три фази $L + \gamma + \mu$, яке разом з полем 12, що відповідає об'єму моноваріантного евтектичного процесу $L \leftrightarrow \mu$ $+ \varepsilon$ спускається до площини при 1033 К. При вказаній температурі проходить нонваріантний перитектичний процес $L_{1174} + \mu \leftrightarrow \gamma + \varepsilon$. В зразках досліджуваного перерізу він закінчується зникненням і рідини і кристалів µ-твердих розчинів на основі CuIn₅S₈, тому нижче 1033 К сплави двохфазні і містять кристали γ-твердих розчинів на основі халькопіритної структури CuInS₂ і ε-твердих розчинів на основі CuIn₂S₃I. Горизонталь при 1148 К відповідає нонваріантному перитектичному процесу L_{U4} + $\delta \leftrightarrow \mu$ + ϵ , який завершується зникненням кристалів δ -твердих розчинів на основі BTM-In₂S₃, тому нижче вказаної горизонталі сплави трифазні L + μ + ϵ . Розчинність на основі потрійної сполуки є незначною і становить до 5 мол.% другого компоненту.

Політермічний переріз CuInS, - "Cu₃SI"

За результатами РФА та ДТА синтезованих зразків побудований політермічний переріз (рис. 4), ліквідус якого представлений кривими первинної кристалізації α -твердих розчинів на основі BTM-CuInS₂ та χ -твердих розчинів на основі сполуки Cu₂S.

Рис. 4. Політермічний переріз CuInS₂ – "Cu₃SI": 1 – L, 2 – L + α , 3 – L + κ , 4 – L + χ + α , 5 – L + α + β , 6 – L + β , 7 – L + β + κ , 8 – L + β + γ , 9 – L + γ , 10 – γ , 11 – L + χ + γ , 12 – L + κ + η , 13 – κ + η , 14 – κ + γ , 15 – κ + η + γ , 16 – β + γ , 17 – β , 18 – β + γ , 19 – α

 $\begin{array}{c} \mbox{Fig. 4. The polythermal section of the } CuInS_2 - ``Cu_3SI'': 1-L, 2-L+\alpha, \\ 3-L+\chi, 4-L+\chi+\alpha, 5-L+\alpha+\beta, 6-L+\beta, 7-L+\beta+\kappa, 8-L+\beta+\gamma, 9-L+\gamma, 10-\gamma, 11-L\\ +\kappa+\gamma, 12-L+\kappa+\eta, 13-\kappa+\eta, 14-\kappa+\gamma, 15-\kappa+\eta+\gamma, \\ 16-\beta+\gamma, 17-\beta, 18-\beta+\gamma, 19-\alpha \end{array}$

Нижче кривих ліквідусу знаходяться об'єми моноваріантних метатектичного процесу $\alpha \leftrightarrow Lm_1 + \beta$ та евтектичного процесу $L \leftrightarrow \alpha + \kappa$. Ці об'єми сходяться до площини нонваріантного процесу $L_{U1} + \alpha \leftrightarrow \beta + \kappa$, що відбувається при температурі 1183 К. В сплавах досліджуваного перерізу, даний процес закінчується зникненням кристалів α -твердих розчинів, тому нижче вказаної площини сплави трьохфазні (поле 7).

Цей об'єм відповідає моноваріантному евтектичному процесу $L \leftrightarrow \kappa + \beta$, що опускається до площини нонваріантного перитектичного процесу: L₁₁₂ + $\beta \leftrightarrow \gamma + \kappa$. До площини цього процесу також опускається об'єм моноваріантного метатектичного процесу $\beta \leftrightarrow Lm_{\gamma} + \gamma$. В сплавах досліджуваного перерізу вищевказаний нонваріантний процес при 1143 К завершується зникненням кристалів β-твердих розчинів, тому зразки нижче 1143 К трьохфазні L + γ + κ (поле 11, рис. 4). Цей об'єм спускається до площини ще одного нонваріантного перитектичного процесу $L_{U3} + \kappa \leftrightarrow \gamma + \eta$, що проходить при температурі 943 К. До цієї площини спускається об'єм моноваріантного перитектичного процесу $L_{n3} + \kappa \leftrightarrow \eta$ (поле 12, рис. 4). У зразках досліджуваного перерізу нонваріантний перитектичний процес завершується зникненням рідини, тому нижче 943 К сплави трьохфазні к + ү + η, що встановлено за результатами РФА. Зразок, що відповідає складу "Cu₃SI" є двохфазним і містить відбиття двох фаз к + η. Наші результати узгоджується з результатами роботи [6], тому поле 13 двохфазне (κ + η). Розчинність на основі CuInS, при температурі відпалу становить до 5 мол. %.

Політермічний переріз CuIn₅S₈ – CuIn₅S₃I

Переріз перетинає поверхню первинної кристалізації б-твердих розчинів на основі ВТМ- In_2S_3 . Нижче ліквідусу знаходяться об'єми вторинної кристалізації моноваріантних перитектичних процесів L + $\delta \leftrightarrow \mu$ та L + $\delta \leftrightarrow \varepsilon$, які сходяться до горизонталі при 1148 K, що лежить на площині нонваріантного перитектичного процесу $L_{U4} + \delta \leftrightarrow \mu + \varepsilon$. Цей процес завершується зникненням рідини і δ -твердого розчину, тому сплави стають двохфазні μ + ε (поле 9). Протяжність твердих розчинів на основі CuIn₅S₈ при температурі відпалу 5 мол.% CuIn₂S₃I. Розчинність на основі тетрарної сполуки складає менше 3 мол.% (рис. 5).

Ізотермічний переріз та проекція поверхні ліквідусу квазіпотрійної системи Cu₂S – In₂S₃ – CuI

Досліджуваний ізотермічний переріз побудований за результатами РФА (рис. 6).

Проекція поверхні ліквідусу побудована за власними результатами дослідження двох діаграм стану $In_2S_3 - CuI$, $CuInS_2 - CuI$ та трьох політермічних перерізів $CuIn_5S_8 - CuIn_2S_3I$, $CuInS_2 - CuIn_2S_3I$, $CuInS_2 - ``Cu_3SI''$ (рис. 7), таблиця. Крім того, використовували літературні дані дослідження обмежуючих квазібінарних систем $Cu_2S - In_2S_3[2]$ та $Cu_2S - CuI [6]$.

Рис. 5. Політермічний переріз CuIn₅S₈ – CuIn₂S₃I: 1 – L, 2 – L + δ , 3 – L + δ + μ , 4 – L + δ + ϵ , 5 – δ + μ , 6 – μ , 7 – δ + ϵ , 8 – ϵ , 9 – μ + ϵ

Fig. 5. The polythermal section of the $CuIn_5S_8-CuIn_2S_3I$: $1-L,\,2-L+\delta,\,3-L+\delta+\mu,\,4-L+\delta+\epsilon,\,5-\delta+\mu,\,6-\mu,\,7-\delta+\epsilon,\,8-\epsilon,\,9-\mu+\epsilon$

Рис. 6. Ізотермічний переріз квазіпотрійної системи Cu₂S – In₂S₃ – CuI при 770 К: γ – HTM-CuInS₂, пр. гр. I-42*d*; δ'– HTM-In₂S₃, пр. гр. *I*41/*amd*; ε – CuIn₂S₃I, пр. гр. *F*-43*m*; η – CuI, пр. гр. *F*-43*m*; – Cu₂S, пр. гр. *Fm*-3*m*; μ – CuIn₂S₃, пр. гр. *Fd*3*m*

Fig. 6. The isothermal section of the Cu₂S – In₂S₃ – CuI quasi-ternary system at 770 K: γ – LTM-CuInS₂, s. g. I-42*d*; δ' – LTM-In₂S₃, s. g. *I*41/*amd*; ϵ – CuIn₂S₃I, s. g. *F*-43*m*; η – CuI, s. g. *F*-43*m*; κ – Cu₂S, s. g. *Fm*-3*m*; μ – CuIn₅S₈ s. g. *Fd*3*m*

Рис. 7. Проекція поверхні ліквідусу квазіпотрійної системи $Cu_2S - In_2S_3 - CuI$ Fig. 7. The liquidus surface projection of the $Cu_2S - In_2S_3 - CuI$ quasi-ternary system

Таблиця

Нонваріантні процеси у квазіпотрійній систем
і $\mathrm{Cu}_2\mathrm{S}-\mathrm{In}_2\mathrm{S}_3-\mathrm{CuI}$

Table

Non-variant processe	s in the Cu,	S – In ₂ S ₃ – CuI	quasi-ternary system
----------------------	--------------	--	----------------------

Нонваріантна точка	Нонваріантний процес	Т, К
e ₁	$L \leftrightarrow \mu + \alpha$	1338
e ₂	$L \leftrightarrow \varkappa + \alpha$	1263
p ₁	$L + \delta \leftrightarrow \epsilon$	1198
p ₂	$L + \epsilon \leftrightarrow \eta$	1133
p ₃	$L + \varkappa \leftrightarrow \eta$	954
P_4	$L + \gamma \leftrightarrow \eta$	923
p ₅	$L + \delta \leftrightarrow \mu$	1358
m	$\alpha \leftrightarrow \beta + L$	1258
m ₂	$\beta \leftrightarrow \gamma + L$	1233
U ₁	$L + \alpha \leftrightarrow \varkappa + \beta$	1183

Фазові рівноваги в квазіпотрійній системі Cu,S – In,S, – CuI

	Ilpo	довження таблиці
Нонваріантна точка	Нонваріантний процес	Т, К
U ₂	$L + \beta \leftrightarrow \gamma + \kappa$	1143
U ₃	$L + \varkappa \leftrightarrow \gamma + \eta$	943
U_4	$L + \delta \leftrightarrow \mu + \epsilon$	1148
U ₅	$L + \alpha \leftrightarrow \beta + \mu$	1243
U_6	$L+\beta \leftrightarrow \gamma+\mu$	1203
U ₇	$L + \mu \leftrightarrow \gamma + \epsilon$	1033
E ₁	$L \leftrightarrow \gamma + \eta + \epsilon$	898

-

висновки

Методами РФА та ДТА досліджена квазіпотрійна система Cu₂S - In₂S₃ -CuI. В ній виявлений тетрарний халькогалогенід складу CuIn,S,I, пр. гр. F-43m. В системі виявлена значна область гомогенності на основі CuI, що простягається вздовж системи Cu₂S – CuI. Побудовано 2 діаграми стану, 3 політермічні перерізи, ізотермічний переріз при 770 К та проекцію поверхні ліквідусу на концентраційний трикутник. Встановлено фазові рівноваги в даній системі.

СПИСОК ЛІТЕРАТУРИ

- 1. Лазарев В.Б., Киш З.З., Переш Е.Ю., Семрад Е.Е. Сложные халькогениды в системах А^{II}-В^{III}-С^{VI}. М., Металургия. - 1993. - С. 140.
- 2. Binsma J.M., Giling L.J., Bloem J. Phase relations in the system Cu₂S In₂S₃. // J. Cryst. Growth. -1980. Vol. 50, N 2. - P. 429-436. https://doi.org/10.1016/0022-0248(80)90090-1
- 3. Qi Y., Liu Q., Tang K. Synthesis and characterization of nanostructured wurtzite CuInS,: a new cation disordered polymorph of CuInS₂. // J. Phys. Chem. - 2009. - Vol. 113, N 10. - P. 3939-3944. https://doi.org/10.1021/ jp807987t
- 4. Kitamura S., Endo S., Irie T. Semiconducting properties of CuIn₅S₈ single crystals I. Electrical properties // J. Phys. Chem. Solids. - 1985. - N 46. - P. 881-885. https://doi.org/10.1016/0022-0248(80)90090-1
- 5. Gastaldi L., Scaramuzza L. Single-crystal structure analysis of the spinel copper pentaindium octasulphide. // Acta Cryst. - 1980. - B 36. - P. 2751-2753. https://doi.org/10.1107/S0567740880009880
- 6. Погодін А.І., Кохан О.П., Барчій І.Є. Фізико-хімічна взаємодія у квазіпотрійній системі CuI Cu₂S Си, РЅ, І. // Укр. хім. журн. – 2012. – Т. 78, № 12 – С. 102-106.
- 7. Range K.J.Huebner H.J., Teil B. Hochdrucksysteme quaternärer Chalkogenidhalogenide AB,X,Y (A=Cu, Ag; B=In; X=S, Se, Te; Y=Cl, Br, I) // J. Chem. Scien. Zeitschrift für Naturforschung – 1983. – N 38. – P. 155-160. https://doi.org/10.1515/znb-1983-0207

Стаття надійшла до редакції 28.01.2020

В. С. Козак, И. А. Иващенко, И. Д. Олексеюк

Восточноевропейский национальный университет имени Леси Украинки, пр. Воли 13, 43025 г. Луцк, Украина E-mail: inna.ivashchenko05@gmail.com

ФАЗОВЫЕ РАВНОВЕСИЯ В КВАЗИТРОЙНОЙ СИСТЕМЕ Cu,S – In,S, – CuI

Методами рентгенофазового и дифференциально-термического анализов исследованы фазовые равновесия в квазитройной системе $Cu_2S - In_2S_3 - CuI$. Построено изотермическое сечение квазитройной системы при 770 К, две диаграммы состояния $In_2S_3 - CuI$ та $CuIns_2 - CuI$, три политермических сечения $CuIn_5S_8 - CuIn_2S_3I$, $CuIns_2 - CuIn_$

Ключевые слова: фазовые равновесия, изотермический разрез, проекция поверхности ликвидуса

V. S. Kozak, I. A. Ivashchenko, I. D. Olekseyuk

Eastern European National University, Voli Ave 13, 43025 Lutsk, Ukraine E-mail: inna.ivashchenko05@gmail.com

PHASE EQUILIBRIUMIN THE $Cu_2S - In_2S_3 - CuI$ QUASI-TERNARY SYSTEM

The interaction between the components in the $Cu_2S - In_2S_3 - CuI$ system has been inverstigated by methods of X-ray analysis and differential-thermal analysis. An isothermal section of the quasi-ternary system at 770 K, two phase diagrams, three polythermal sections and the liquidus surface projection of the system were constructed.

The isothermal section of the Cu₂S – In₂S₃ – CuI quasi-ternary system at 770 K has been built based on the results of the X-ray analysis. The large regions of the solid solutions based on binary, ternary and quaternary compounds do not form at 770 K. The following one-phase regions were fixed at the temperature: κ -solid solutions based on Cu₂S with cubic structure (S. G. *Fm-3m*), η-solid solutions based on CuI (S. G. *F-43m*), ϵ -solid solutions based on CuIn₂S₃ with a cubic structure (S. G. *F-43m*), δ' -solid solutions based on LTM-In₂S₃ (S.G. *I-4/amd*), μ -solid solutions based on CuIn₅S₈(S.G. *Fd3m*), γ -solid solutions based on LTM-CuInS₂ (S.G. *I-42d*). These single-phase regions are separated by nine two-phase equilibria.

The liquidus surface projection was built based on the two phase diagrams of In₂S₃ –CuI and CuIn₂ – CuI systems and three polythermal sections CuIn₃S₈ –CuIn₂S₃I, CuIn₂S₃I, CuIn₂S₃I, CuIn₂S₃ –CuI₂S₃I, CuIn₂S₃ –CuI₂S₃I, CuIn₂S₃ –CuI₂S₃I, CuIn₂S₃ –CuI₂S₃I, CuIn₂S₃ – Cu₂S₃ – CuI systems have been used. The liquidus surface projection consists from the areas of primary crystallization of κ-solid solutions based on Cu₂S₃ , α-solid solutions based on HTM-CuIn₂S₂, β-solid solutions based on 2-HTM-CuIn₂S₃, γ-solid solutions based on CuIn₂S₃I, η-solid solutions based on CuI. These areas are separated by 18 mono-variant curves and 17 non-variant points.

Keywords: phase equilibrium, isothermal section, liquidus surface projection

REFERENCES

- Lazarev V.B., Kysh Z.Z., Peresh E. Yu., Semrad E.E. Complex chalcogenides in systems A^{II}-B^{III}-C¹⁷. Moscow, Metallurgy, 1993, pp. 140. (in Russian)
- Binsma J.M., Giling L.J., Bloem J. *Phase relations in the system Cu₂S–In₂S₃*, J. Cryst. Growth. 1980, vol. 50, no 2, pp. 429-436.https://doi.org/10.1016/0022-0248(80)90090-1
- Qi Y., Liu Q., Tang K. Synthesis and characterization of nanostructured wurtzite CuInS₂: a new cation disordered polymorph of CuInS₂. J. Phys. Chem., 2009, vol. 113, no10, pp. 3939-3944. https://doi.org/10.1021/ jp807987t
- Kitamura S., Endo S., Irie T. Semiconducting properties of Culn_sS₈ single crystals I. Electrical properties. J. Phys. Chem. Solids, 1985, no 46, iss. 8, pp. 881-885. https://doi.org/10.1016/0022-3697(85)90090-3
- Gastaldi L., Scaramuzza L. Single-crystal structure analysis of the spinel copper pentaindium octasulphide. Acta Cryst., 1980, vol. 36, iss. 11, pp. 2751-2753. https://doi.org/10.1107/S0567740880009880
- Pogodin A.I., Kohan O.P., Barchij I. E. Physico-chemical interaction in the quasi-ternary CuI Cu₂S Cu₃PS₃I system, Ukrainian Chem. J., 2012, vol. 78, no 12, pp.102-106. (in Ukrainian)
- Range K.J. Huebner H.J., Teil B. Hochdrucksysteme quaternäerer Chalkogenidhalogenide AB₂X₃Y (A=Cu, Ag; B=In; X=S, Se, Te; Y=Cl, Br, I) J. Chem. Scien. Zeitschrift für Naturforschung, 1983, no 38, pp. 155-160. https://doi.org/10.1515/znb-1983-0207