УДК 541.123.3

О. А. Корниенко¹, Е. Р. Андриевская^{1,2}, А. И. Быков¹, Ж. Д. Богатырева²

¹Институт проблем материаловедения им. И. Н. Францевича НАН Украины, отдел функциональной керамики на основе редких земель, ул. Кржижановского, 3, Киев, 03680, Украина

²Национальный технический университет Украины «Киевский политехнический институт» им. Игоря Сикорського, кафедра химической технологии керамики и стекла, пр-т Победы, 37, корпус 21, Киев, 03056, Украина

³Физико-технологический институт металлов и сплавов НАН Украины, отдел композиционных материалов, бульв. Академика Вернадского, 34/1, Киев, 03680, Украина e-mail: kornienkooksana@ukr.net

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ ${\bf ZrO_2-Yb_2O_3}$ ПРИ 1100 °C

Исследованы фазовые равновесия в системе $ZrO_2-Yb_2O_3$ при температуре 1100 °C во всем интервале концентраций. Образцы различных составов были приготовлены из растворов азотнокислых солей выпариванием, сушкой и термообработкой при температуре 1100 °C. С помощью рентгенофазового анализа и петрографии установлено, что в системе образуются твердые растворы на основе различных кристаллических модификаций исходных компонентов, а также упорядоченной фазы $Yb_4Zr_3O_{12}$ (δ), кристаллизующейся в ромбоэдрической структуре.

Ключевые слова: фазовые равновесия, диаграммы состояния, твердые растворы, параметры элементарной ячейки, функциональная керамика.

ВВЕДЕНИЕ

Системы на основе оксидов циркония и редкоземельных элементов (РЗЭ) широко используются в качестве огнеупорных материалов вследствие высоких температур плавления, высокой износостойкости, коррозионной стойкости в различных агрессивных средах, а также высоких механических характеристик при повышенных температурах. Частично или полностью стабилизированный диоксид циркония благодаря уникальному сочетанию физических и механических свойств находит применение в качестве конструкционной и функциональной керамики [1].

Фазовые равновесия в двойной системе $ZrO_2-Yb_2O_3$ исследованы в [2-13]. Диаграмма состояния системы $ZrO_2-Yb_2O_3$ представлена на рис. 1. Система характеризуется максимумом при 2820 °C и 25 мол. % Yb_2O_3 , минимумом при 2400 °C и 85 мол.% Yb_2O_3 , перитектическим превращением $L+F \rightleftharpoons C$ при 2460 °C и 79 мол.% Yb_2O_3 . В системе образуются области твердых растворов на основе моноклинной (M) и кубической (F) модификаций ZrO_2 , а также кубической (C) модификации Yb_2O_3 . Согласно данным [3] в исследуемой системе новые фазы не обнаружены. Установлено, что твердый раствор типа флюорита (F) непрерывно переходит в твердый раствор C- типа со структурой Tl_2O_3 [3]. Более поздние исследования [4-13] показали, что в системе образуется упорядоченная фаза $Yb_4Zr_3O_{12}$ (δ), с ромбоэдричной структурой (рис. 1. δ , ϵ). При температуре выше 1630 °C соединение $Yb_4Zr_3O_{12}$ переходит в дефектную структуру типа флюорита (F- ZrO_2). Следует отметить, что данные работ [4] и [12] не согласуются между собой в области образования упорядоченной δ -фазы $Yb_4Zr_3O_{12}$.

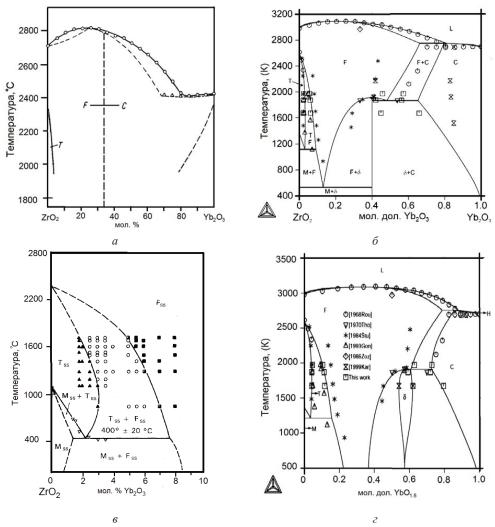


Рис. 1. Диаграмма состояния системы ZrO_2 - Yb_2O_3 (a = [3], δ = [4], ϵ = [13], ϵ = [12])

Взаимодействие фаз в системе ${\rm ZrO_2-Yb_2O_3}$ изучено в [13]. Подобно системе ${\rm ZrO_2-Y_2O_3}$ в составе, содержащем 40 мол. % ${\rm Yb_2O_3}$ наблюдали эффект упорядочения. Твердый раствор на основе кубической модификации ${\rm ZrO_2}$ со структурой типа флюорита и параметром элементарной ячейки $a=0.5165\pm0.0005$ нм образуется при температуре ~1650 °C в течение 2 часов. Упорядоченная фаза ${\rm Yb_4Zr_3O_{12}}$ (δ) образуется по эвтектоидной реакции после обжига в течение 1000 часов, имеет ромбоэдрическую структуру (изоструктурно ${\rm UY_6O_{12}}$) с параметрами элементарной ячейки $a=0.9641\pm0.0005$ нм и $c=0.8978\pm0.0005$ нм. Термическая стабильность упорядоченной δ -фазы изучена при нагревании до определенной температуры. Установлено, что δ -фаза переходит в неупорядоченный твердый

раствор типа флюорита при температуре 1630 ± 10 °C в течение нескольких часов.

Из анализа литературных данных следует, что фазовые равновесия в системе ZrO₂-Yb₂O₃ требуют дополнительных исследований.

В настоящей работе изучено взаимодействие фаз в системе ZrO_2 - Yb_2O_3 при температуре 1100 °C во всем интервале концентраций.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В качестве исходных веществ использовали азотнокислую соль циркония ZrO(NO₃), 2H₂O марки Ч, азотную кислоту марки ЧДА и Yb₂O₃ с содержанием основного компонента не менее 99.99%. Образцы готовили с концентрационным шагом 1-5 мол. % из растворов нитратов выпариванием с последующим разложением нитратов на оксиды путем прокаливания при 1200 °C в течение 2 ч. Порошки прессовали в таблетки диаметром 5 и высотою 4 мм под давлением 10 МПа. В области низких температур (≤ 1100 °C) фазовые равновесия, включающие процессы распада и упорядочения, устанавливаются крайне медленно из-за малой скорости диффузионных процессов в катионной подрешетке, что обуславливает необходимость продолжительного обжига [14]. Термообработку образцов проводили в печи с нагревателями H23U5T (фехраль) на протяжении 12415 часов, на воздухе. Скорость подъема и снижения температуры составляла 3,5 град мин⁻¹. Обжиг был непрерывным. Через определенные промежутки времени проверяли полноту синтеза. Затем образцы перетирали, прессовали и подвергали последующей термообработке. После обжига в течение 12415 часов изменения фазового состава в системе не наблюдали. Фазовый состав образцов исследовали методами рентгеновского и микроструктурного анализов.

Рентгенофазовый анализ образцов выполняли методом порошка на установке ДРОН-3 при комнатной температуре (CuK_{α} -излучение). Шаг сканирования составлял 0.05-0.1 град/мин в диапазоне углов $2\theta=10$ – 100° . Для определения фазового состава использовали базу данных Международного комитета порошковых стандартов (JSPDS International Center for Diffraction Data 1999). Параметры элементарных ячеек твердых растворов рассчитывали методом наименьших квадратов с использованием программы LATTIC. Состав образцов контролировали с помощью спектрального и химического анализов выборочно.

Объем элементарной ячейки твердых растворов определяли с использованием данных параметров элементарной ячейки полученных с помощью рентгенофазового анализа:

Кубическая сингония:
$$V_{ek} = a^3$$
 (1)

Моноклинная сингония:
$$V_{ab} = a \cdot b \cdot c \cdot \sin \beta$$
 (2)

Определение процентного содержания кубической фазы ZrO_2 в гетерогенной области проводили с помощью формулы [13]:

$$[\% ZrO_{2(\kappa \vee \delta)}] = (I^{111}_{\kappa} / (I^{111}_{\kappa} + I^{11-1}_{M})) \cdot 100,$$
(3)

где $I^{111}_{_{\mathrm{M}}}$ – интегральная интенсивность пика (111) кубической фазы; $I^{11-1}_{_{\mathrm{M}}}^{\mathrm{F}}$ – интегральная интенсивность пика (11-1) моноклинной фазы.

Границы растворимости уточняли методом поляризационной микроскопии в случае малого содержания второй фазы, не обнаруживаемой методом РФА. Петрографические исследования проведены в проходящем поляризованном свете на обожженных образцах. Кристаллооптические характеристики фаз определяли на поляризационном микроскопе МИН-8 с помощью высокопреломляющих иммерсионных жидкостей.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

В результате проведенных исследований изучены фазовые равновесия в системе $\rm ZrO_2\text{-}Yb_2O_3$ при 1100 °C во всем интервале концентраций (рис. 2). Исходный химический и фазовый состав обожженных образцов при 1100 °C, параметры элементарных ячеек фаз, находящихся в равновесии при заданной температуре, приведены в табл. 1.

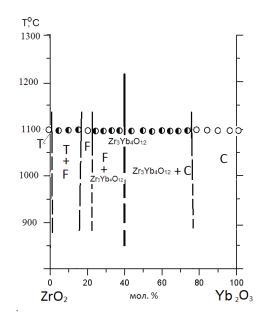


Рис. 2. Фазовые равновесия в системе ZrO_2 - Yb_2O_3 при 1100°C (\circ – однофазные, Φ – двухфазные образцы).

В системе ZrO_2 - Yb_2O_3 обнаружены области твердых растворов на основе тетрагональной (T) и кубической (F) модификаций ZrO_2 , кубической (C) модификации Yb_2O_3 , а также упорядоченной δ -фазы ($Yb_4Zr_3O_{12}$), кристаллизующейся в ромбоэдрической структуре, которые разделены двухфазными полями (T + F), (F + δ) и (δ + C), соответственно.

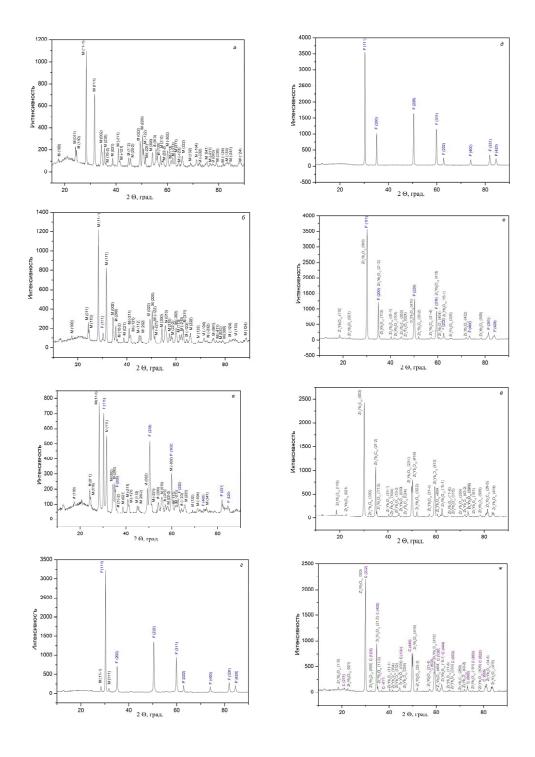
В области с высоким содержанием ZrO_2 образуются твердые растворы на основе тетрагональной модификации ZrO_2 , однако при заданных условиях T- ZrO_2 не закаливается, вместо нее наблюдали образование моноклинной модификации M- ZrO_2 .

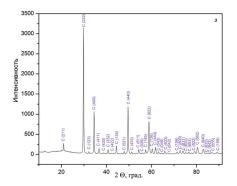
Таблица 1 Фазовый состав и параметры элементарных ячеек фаз после обжига образцов системы ${\bf ZrO_2\text{-}Yb_2O_3}$ при 1100 °C, 12415 ч (по данным РФА и петрографии)

Химический состав, мол. %		Фазовый состав и параметры	Параметры элементарных ячеек фаз, (нм)				
ZrO,	Yb,O,	элементарных ячеек фаз, нм	<c> <f></f></c>		δ		
2	2 3		а	a	a	c	c/a
1	2	3	4	5	6	7	8
0	100	<c></c>	1.041	-	-	-	-
10	90	<c></c>	1.0418	-	-	-	-
15	85	<c></c>	1.0416	-	-	-	-
20	80	<c></c>	1.0403	-	-	-	-
25	75	δ незн.сл+<С>	1.0402	-	-	-	-
30	70	δ незн.сл+<С>	1.0396	-	-	-	-
35	65	δ+ <c></c>	1.0404	-	0.9718	0.9049	0.931
40	60	δ+ <c></c>	1.0388	-	0.9716	0.8943	0.920
45	55	δ+ <c></c>	1.0394	-	0.9662	0.8972	0.929
50	50	δ+ <c></c>	1,0385	-	0.9668	0.8965	0.927
55	45	δ+ <c></c>	1,0387	-	0.9662	0.8967	0.928
57	43	δ+ <c></c>	1.0341	-	0.9654	0.8964	0.929
58	42	δ+ <c>_{сл}</c>	-	-	0.9654	0.8973	0.930
59	41	δ+<С>ел	-	-	0.9650	0.8935	0.926
60	40	δ	-	-	0.9644	0.8973	0.930
61	39	<f> + δ</f>	-	0.5161	0.9645	0.8977	0.931
62	38	<f> + δ</f>	-	0.5158	0.9643	0.8958	0.929
63	37	<f> + δ</f>	-	0.5158	0.9642	0.8951	0.928
64	36	<f> + δ</f>	-	0.5155	0.9639	0.8957	0.930
65	35	<f> + δ</f>	-	0.5157	0.9624	0.8967	0.932
70	30	<f> + δ</f>	-	0.5145	-	-	-
75	25	<f> + δ</f>	-	0.5152	0.9648	0.8917	0.924
80	20	<f></f>	-	0.5132			
85	15	<f>+ <t>_{сл.}*</t></f>	-	0.5124			
90	10	<f>+ <t> * <f>+ <t> *</t></f></t></f>	-	0.5126			
91	9	<f> + <i>*</i></f>	-	0.5128			
92	8	<f> + <t>*↑(a = 0.5137 b = 0.5258, c=0.5216, β=98.8314)</t></f>	-	0.5127			

Продолжение таблицы 1

					1 - 7 1 - 1	imenine ruc	
1	2	3	4	5	6	7	8
93	7	<f> + <t>*↑(a = 0.5260, b = 0.5206, c=0.5211, β=95.6292)</t></f>	-	0.5123	-	-	-
94	6	<f> + <t>*↑(a = 0.5153 b = 0.5269, c=0.5218, β=99.3813)</t></f>	-	0.5124	-	-	-
95	5	<F> + $<$ T>* $↑$ (a = 0.5632, b = 0.5339, c =0.5210, $β$ =103.8001)	ı	0.5123	-	-	-
96	4	$\downarrow + *\uparrow(a = 0.5215 b = 0.5054, c=0.5449, \beta=94.1303)$	-	0.5105	-	-	-
97	3	$\downarrow + * \uparrow (a = 0.5252 b)$ = 0.5148, c=0.5468)	-	0.5121	-	-	-
98	2	<F>↓ + <t>* ↑(a = 0.5121 b = 0.5246, c=0.5408, $β$=98.0915)</t>	ı	0.5117	-	-	-
99	1	$<$ F>\ + <t>* (a = 0.5026, b = 0.5237, c=0.5222, β=95.7721)</t>	-	-	-	-	-
99.5	0.5	$$ + $* (a = 0.5218 b = 0.5200, c=0., \beta=92.3343)$	-	-	-	-	-
100	0	$<$ M> ($a = 0.5172$, $b = 0.5180$, $c = 0.5291$, $\beta = 95.5728$)	-	-	-	-	-


^{*)} При заданных условиях (T = 1100 °C, 12415 ч, на воздухе) тетрагональная модификация $T\text{-}ZrO_2$ не закаливается, вместо нее наблюдали образование моноклинной модификации $M\text{-}ZrO_2$.


Обозначения фаз: <T> – твердые растворы на основе тетрагональной модификации ZrO_2 ; <F> – твердые растворы на основе кубической модификации со структурой типа флюорита ZrO_2 ; <C> – твердые растворы на основе кубической модификации Yb_2O_3 ; δ – упорядоченная фаза $Zr_3Yb_4O_1$, ромбоедрической структуры.

Другие обозначения: осн. — фаза, составляющая основу сл. — следы фазы; \uparrow — содержание фазы увеличивается, \downarrow — уменьшается.

Растворимость Yb_2O_3 в T- ZrO_2 невелика и составляет ~ 0.5 мол. %. Дифрактограммы образцов, характеризующие области твердых растворов в системе ZrO_2 - Yb_2O_3 при 1100 °C представлены на рис. 3.

В соответствии с данными РФА (табл. 1) установлены границы двухфазной области (T + F), которая простирается от 0.5 до 15 мол. % Yb_2O_3 . Образцы, содержащие 99.5 мол. % ZrO_2 - 0.5 мол. % Yb_2O_3 , 85 мол. % ZrO_2 -15 мол. % Yb_2O_3 определяют границы двухфазной области (F + T). На дифрактограмме двухфазного образца (F + T), содержащего 99.5 мол. % ZrO_2 -0.5 мол. % Yb_2O_3 , четко видны линии, характерные для F-фазы ZrO_2 . Интенсивность пиков фазы типа флюорита F- ZrO_2 постепенно возрастает с уменьшением содержания оксида циркония. Для образца, содержащего 97 мол. % ZrO_2 -3 мол. % Yb_2O_3 интенсивности пиков двух фаз отличаются незначительно, что свидетельствует о практически одинаковом соотношении фаз со структурой типа флюорита и тетрагональной модификации ZrO_2 (рис. 3 в). С помощью формулы (3), установлено, что количество кубической фазы в указанном составе составляет 48 %. Зависимость количества F-фазы от концентрации оксида иттербия в гетерогенной области (F + T), приведена в табл. 2.

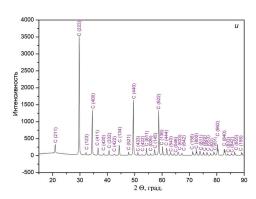


Рис. 3. Дифрактограммы образцов системы $ZrO_2 - Yb_2O_3$ после обжига образцов при 1100 °C: а) 100 мол. % ZrO_2 , (T^*); 6) 99 мол. % $ZrO_2 - 1$ мол. % Yb_2O_3 , (T^*+F); 8) 97 мол. % $ZrO_2 - 3$ мол. % Yb_2O_3 , (T^*+F); 7) 90 мол. % $ZrO_2 - 10$ мол. % Yb_2O_3 , (T^*+F); 8) 60 мол. % $TrO_2 - 20$ мол. % а) 100 мол. % ZrO₂, (T*); в) 97 мол. % ZrO₂ –3 мол. % Yb₂O₃, (T*+F); д) 80 мол. % ZrO₂ – 20 мол. % Yb₂O₃, (F); ё) 60 мол. % ZrO₂ – 40 мол. % Yb₂O₃ (δ);

- 3) 20 мол. % $ZrO_2^2 80$ мол. % $Yb_2^2O_3^3$ (C);

- и) 100 мол. % Yb₂O₃ (C);

Область гомогенности твердых растворов на основе F-ZrO, простирается от 75 до 85 мол. % ZrO, при 1100 °C.

Таблица 2 Изменение объема элементарных ячеек фаз и содержания F-ZrO₂ в гетерогенной области (T + F) системы ZrO,-Ŷb,O, при температуре 1100 °C

(,,,,,,,,,,						
Химический (состав, мол. %	Объем элементарі	Количество F- ZrO ₂ в			
ZrO ₂	Yb ₂ O ₃	<f></f>	<t>*</t>	составе, %		
99.5	0.5	-	0.1481	4		
99	1	-	0.1376	11		
98	2	0.1340	0.1438	25		
97	3	0.1343	0.1473	48		
96	4	0.1330	0.1427	61		
95	5	0.1346	0.1521	74		
94	6	0.1345	0.1398	83		
93	7	0.1346	0.1420	85		
92	8	0.1348	0.1392	92		
91	9	0.1348	-	93		
90	10	0.1347	-	96		

^{*)} При данных условиях (T = 1100 °C, 12415 ч, на воздухе) модификация T-ZrO $_2$ не закаливается, вместо нее наблюдали образование моноклинной (M) модификации ZrO₂.

Параметры элементарных ячеек твердых растворов возрастают от a=0.5124 нм для двухфазного образца (F + T), содержащего 85 мол. % ZrO_2 -15 мол. % Yb_2O_3 до a=0.5152 нм для гетерогенного состава (F + δ), содержащего 75 мол. % ZrO_2 -25 мол. % Yb_2O_3 (рис. 2, табл. 1), Согласно данным, РФА в образцах, содержащих 10 и 15 мол. % Yb_2O_3 при температуре 1100 °C обнаружена одна фаза F-ZrO2, тогда как поляризационная микроскопия указывает на присутствие в малом количестве (ниже порога чувствительности РФА) второй анизотропной фазы M-ZrO2, которая проявляется в виде коричневых кристаллов. В то же время, образец, содержащий 20 мол. % Yb_2O_3 , по данным РФА и петрографии характеризуется наличием только одной изотропной фазы — F-ZrO2.

Упорядоченная δ -фаза (Yb $_4$ Zr $_3$ O $_{12}$) находится в равновесии с фазами кубической симметрии и присутствует в гетерогенных областях (F + δ , C + δ), отвечает стехиометрическому составу 40 мол. % Yb $_2$ O $_3$ с отношением a/c=1.0748 и параметрами элементарной ячейки: a=0.9644 нм, c=0.8973 нм при 1100 °C. Полученные результаты согласуются с данными [4].

В области с высоким содержанием Yb_2O_3 образуются твердые растворы на основе кубической модификации С-типа оксидов РЗЭ. Границы области гомогенности $C-Yb_2O_3$ составляют 80-100 мол. % Yb_2O_3 . Параметры элементарных ячеек твердых растворов уменьшаются от a=1.043 нм для чистого Yb_2O_3 до a=1.0402 нм для гетерогенного состава ($\delta+C$), содержащего 25 мол. % ZrO_2 -75 мол. % Yb_2O_3 , (рис. 2, табл. 1).

выводы

Изучены фазовые равновесия в системе ZrO₂-Yb₂O₃ при температуре 1100 °C во всем интервале концентраций. В системе обнаружены твердые растворы на основе различных кристаллических модификаций исходных компонентов, а также упорядоченная б-фаза (Yb₄Zr₃O₁₂) с ромбоэдрической структурой. Определены границы областей твердых растворов на основе тетрагональной (T) и кубической (F) модификаций ZrO2, а также кубической (C) модификации Yb_2O_3 и δ -фазы $(Yb_4Zr_3O_{12})$. Показано, что упорядоченная δ -фаза отвечает стехиометрическому составу 40 мол. % Yb,O,. Используя результаты наших предыдущих исследований [15] установлено, что растворимость Уб,О3 (Dy_3O_3) в решетке ZrO₃, не изменяется с изменением ионного радиуса Ln^{3+} и составляет 0.5 мол. %. В то время, как область гомогенности кубических твердых растворов С-типа увеличивается от 75 до 80 мол. % для УЬ,О, и Dy,О,, соответственно. Количество фазовых полей в системе ZrO₂-Yb₂O₃ по сравнению с системой ZrO₃-Dy₂O₃ [15] увеличивается за счет образования δ -фазы (Yb₄Zr₂O₃). Полученные данные могут быть использованы для выбора оптимальных составов и разработки новых функциональных материалов с улучшенными свой-

Работа выполнена при поддержке МОН Украины (грант № М 206-2017, совместный проект Украина – Индия).

Стаття надійшла до редакції 02.11.2017

СПИСОК ЛИТЕРАТУРЫ

- 1. Борик М.А., Бублик В.Т., Кулебякин А.В., Ломонова Е.Е., Милович Ф.О., Мызина В.А., Осико В.В., Серяков С.В., Табачкова Н.Ю. Особенности методики исследования кристаллов частично стабилизированного диоксида циркония // Заводская лаборатория. «Диагностика материалов». 2012. Т. 78. С. 26-30.
- Thormber M.R., Bevan D.J.M. Summerville E. Mixed oxides of hte typy MO₂ (fluorite) M₂O₃ very phase studies in the system ZrO₂-M₂O₃ (M=Sc, Yb, Er, Dy) // J. Solid State Chem. 1970. Vol. 1. P. 545-553. http://dx.doi.org/10.1016/0022-4596(70)90140-4
- 3. Rouanet A. Contribution a l'etude des systemes zirconia oxydes des lanthanides au voisinage de la fusion: Memoire de these // Rev. Intern. Hautes Temper. et Refract. 1971. Vol. 8, N 2. P. 161-180.
- Fabrichnaya O., Seifert H.J. Thermodynamic assessment of the ZrO₂-Yb₂O₃-Al₂O₃ system // Calphad. 2010. – Vol. 34 – P. 206–214. http://dx.doi.org/10.1016/j.calphad.2010.03.001
- Angeles-Chavez C., Salas P., Díaz-Torres L.A., E. de la Rosa, Esparza R., Perez R. Structural and Chemical Characterization of Yb₂O₃-ZrO₂ System by HAADF-STEM and HRTEMC // Microsc. Microanal. – 2009 – Vol. 15. – P. 46–53. http://dx.doi.org/10.1017/S1431927609090047
- Corman G. S. and Stubican V. S. Phase Equilibria and Ionic Conductivity in the System ZrO₂-Yb₂O₃-Y₂O₃ //
 J. Am. Ceramic Soc. 1985. Vol. 68, N 4 P. 174–181. http://dx.doi.org/10.1111/j.1151-2916.1985.tb15293.x
- 7. *Лопато Л.М., Редько В.П., Герасимюк Г.И.* Синтез некоторых цирканатов (гафнатов) РЗЭ // Порошковая металлургия. 1990. № 4. С. 73-75.
- Lakiza S.M., Red'ko V.P., Lopato L.M. The Al₂O₃–ZrO₂–Yb₂O₃ phase diagram. I. Isothermal sections at 1250 and 1650°C // Powder Metallurgy and Metal Ceramics. 2008. Vol. 47, N 3-4. P. 60–69. http://dx.doi.org/10.1007/s11106-008-9006-6
- Lakiza S.M., Zaitseva Z.O., Lopato L.M. Physicochemical materials research Al₂O₃–ZrO₂–Yb₂O₃ Phase diagram. II. Liquidus surface // Powder Metallurgy and Metal Ceramics. 2008. Vol. 47, N 5-6. P. 338-343. http://dx.doi.org/10.1007/s11106-008-9025-3
- Lakiza S. M., Red'ko V. P., Lopato L. M. Al₂O₃-ZrO₂-Yb₂O₃ phase diagram. III. Solidus surface // Powder Metallurgy and Metal Ceramics. 2008. Vol. 47, N 7-8. P. 420-427. https://doi.org/10.1007/s11106-008-9036-0
- Lakiza S.M., Red'ko V. P., Lopato L. M. Physicochemical materials research Al₂O₃–ZrO₂–Yb₂O₃ Phase diagram.
 IV. Vertecal sections. // Powder Metallurgy and Metal Ceramics. 2008. Vol. 47, N. 9-10 P. 577 585. http://dx.doi.org/10.1007/s11106-008-9061-z
- Chong W. Experimental and Computational Phase Studies of the ZrO₂-based Systems for Thermal Barrier Coatings // Dissertation and er Universität Stuttgart Max-Planck-Institut für Metallforschung. 2006. 183 p.
- Gonzalez M., Moure C., Jurado J. R. and Duran P. Solid-state reaction, microstructure and phase relations in the ZrO₂-rich region of the ZrO₂-Yb₂O₃ system // J. Mater. Sci. – 1993. – Vol. 28 – P. 3451–3456. http://dx.doi. org/10.1007/BF01159821
- 14. *Андриевская Е.Р.* Фазовые равновесия в системах оксидов гафния, циркония и иттрия с оксидами редкоземельных элементов. Киев: Наукова думка, 2010. 470 с.
- 15. Корниенко О.А., Коричев С.Ф., Богатырева Ж.Д., Андриевская Е.Р. Фазовые равновесия в системе ${\rm ZrO_2-Dy_2O_3}$ при 1100 °C // Вестник ОНУ. Химия. 2016 Т. 21 № 3(59) С. 77-87. http://dx.doi. org/10.18524/2304-0947.2016.3(59).79592

Стаття надійшла до редакції 06.11.2017

О. А. Корнієнко¹, О. Р. Андрієвська^{1,2}, О. І. Биков¹, Ж. Д. Богатирьова³

¹Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, відділ функціональної кераміки на основі рідкісних земель, вул. Кржижановського, 3, м. Київ, 03680, Україна

²Національний технічний університет України «Київський політехнічний інститут» ім. Ігоря Сікорського, кафедра хімічної технології кераміки та скла, проспект Перемоги, 37, корпус 21, м. Київ, 03056, Україна ³Фізико-технологічний інститут металів та сплавів НАН України, відділ композиційних матеріалів, бульв. Академіка Вернадського, 34/1, м. Київ, 03680, Україна, e-mail: kornienkooksana@ukr.net

ФАЗОВІ РІВНОВАГИ В СИСТЕМІ $\mathbf{ZrO_2}$ – $\mathbf{Yb_2O_3}$ ПРИ 1100 °C

Досліджено фазові рівноваги в подвійній системі ZrO,-Yb,O, при температурі 1100 °C в усьому інтервалі концентрацій. Зразки отримані з розчинів азотнокислих солей випарюванням, сушкою і термообробкою при температурі 1100 °C. Для дослідження взаємодії в системі ZrO,-Yb,O, при 1100 °С термообработку зразків проводили в печі з нагрівачами H23U5T (фехраль) 12342 год. Зразки нагрівали від кімнатної до потрібної температури із швидкістю 3.5 град/хв. Охолодження проводили разом з піччю. За допомогою методів рентгенофазового аналізу та петрографії встановлено, що в системі утворюються тверді розчини на основі тетрагональної (Т) і кубічної (F) модифікацій ZrO,, кубічної (С) модифікації Yb_2O_3 , а також впорядкованої δ -фази ($Yb_4Zr_2O_{12}$), що кристалізується в ромбоедричній структурі, які розділені двофазними полями (F + T), $(F + \delta)$ та $(\delta +$ С), відповідно. Границі області гомогенності С-Уь,О, складають 80-100 мол. % Уь,О, при 1100 °С. Параметри елементарних комірок твердих розчинів зменшуються від a = 11.043 нм для чистого Yb₂O₃ до a = 1.0402 нм для гетерогенного складу (δ +C), що містить 25 мол. % ZrO₂-75 мол. % Yb₂O₃ при 1100 °C. Тверді розчини на основі тетрагональної модифікації ZrO, при заданих умовах не загартовуються, замість них спостерігали утворення моноклінної М- модифікації ZrO₂. Розчинність Yb₂O₃ в T-ZrO₅ невелика і складає 0.5 мол. %. Встановлено границі двофазної області (T + F), яка простягається від 0.5 до 15 мол. % Yb₂O₃. Зразки, що містять 99.5 мол. % ZrO₃-0.5 мол. % Yb₂O₃, 90 мол. % ZrO₂-10 мол. % Yb₂O₃ визначають границі двофазної області (F + T). Область гомогенності твердих розчинів на основі F-ZrO, простягається від 85 до 75 мол. % ZrO₂. Параметри елементарних комірок змінюються від a = 0.5124 нм для зразка, що містить 85 мол. % ZrO₃-15 мол. % Yb₃O₃ до a = 0.5152 нм для гетерогенного складу (F + δ), що містить 75 мол. % ZrO₂-25 мол. % Yb₂O₃.

Ключові слова: фазові рівноваги, діаграма стану, тверді розчини, періоди кристалічних решіток, функціональна кераміка.

O. A. Kornienko¹, E. R. Andrievskaya^{1,2}, O. I. Bukov¹, J. D. Bogatyryova³

¹Frantsevich Institute for Problems of Materials Science, Ukraine NASU, Kiev, Department of Functional ceramics based on rare-earths, 3 Krzhizhanovsky str., Kyiv, 03680, Ukraine ²National technical university of Ukraine «Igor Sikorsky Kiev Polytechnic Institute», Department of chemical technology for ceramics and glass, 37 Pobedy Ave., Bld. 21, Kyiv, 03056, Ukraine

³Physics and Technology Institute of Metal and Alloys NAS of Ukraine, Department of composite materials, 34/1 Academician Vernadsky Blvd, Kyiv, 03680, Ukraine, e-mail: kornienkooksana@ukr.net

PHASE EQUILIBRIA IN THE zro,-Yb,o, SYSTEM AT 1100 °C

Phase equilibria in the binary ZrO₂ – Yb₂O₃ system at 1100°C were studied by X-ray diffraction and petrography in the overall concentration range. The samples of different compositions have been prepared from nitrate acid solutions by evaporation, drying, and calcinations at 1100°C. To study phase relationships at 1100°C the as-prepared samples were thermally treated in the furnace with heating elements based on Fecral (H23U5T) at 1100°C (for 12415 in air). The heating rate was 3.5°C/min. It was established that in the ZrO₂-Yb₂O₃ system there exist fi elds of solid solutions based on cubic (C) modification of Yb₂O₃, tetragonal (T) crystal modifications of ZrO₂, cubic modification of ZrO₂ with fl uorite-type structure (F) and δ -phase of Yb₄Zr₃O₁₂ which are separated by wide two phase fields (F + T) and (F + δ) and (δ +C). The boundaries of the homogeneity fi eld for C-Yb₂O₃ solid solutions were determined from samples containing 80-100 mol % Yb₂O₃ at heat treatment 1100°C (12415 h). The lattice parameter of the unit cell decreased from $\ddot{a} = 1.043$ nm in pure Yb₂O₂ to a = 1.0402 nm for sample containing 25 mol % ZrO₂- 75 mol % Yb₂O₃. The solubility of Yb₂O₃ in the T-ZrO₂ is low and amounts to 0.5 mol%, as evidenced by XRD analysis results. It is the solid solutions based on tetragonal modification of zirconia cannot be quenched from high temperatures due to low stability of T-ZrO, under cooling with furnace conditions. The diffraction patterns recorded at room temperatures included the peaks of monoclinic phase M-ZrO, was found. The homogeneity fi eld of F-ZrO₂ in the concentration range of 85-75 mol % ZrO₂ at 1100 °C was established. The lattice parameters of the unit cell increased from a = 0.5124 nm for sample containing 85 mol % ZrO_2 -15 mol % Yb_2O_3 to a = 0.5152 nm the two-phase (F+ δ) sample containing 75 mol % ZrO₂-25 mol % Yb₂O₃

Keywords: phase equilibria, phase diagram, solid solutions, lattice parameters of the unit cells, functional materials.

REFERENCES

- Borik M.A., Bublik V.T., Kulebyakin A.V., Lomonova E.E., Milovic F.O., Myzina V.A., Osiko V.V., Seryakov S.V., Tabachkova N.Y. Features of a technique of research of crystals of partially stabilized zirconia. Factory Laboratory. «Diagnosis of materials.» 2012, vol. 78, pp. 26-30. (in Russian).
- 2. Thormber M.R., Bevan D.J.M. Summerville E. *Mixed oxides of hte typy MO*₂ (*fluorite*) M_2O_3 *very phase studies in the system ZrO*₂- M_2O_3 (M=Sc, Yb, Er, Dy) J. Solid State Chem., 1970, vol. 1, pp. 545-553. http://dx.doi.org/10.1016/0022-4596(70)90140-4
- 3. Rouanet A. Contribution a l'étude des systemes zirconia oxydes des lanthanides au voisinage de la fusion: Memoire de these. Rev. Intern. Hautes Temper. et Refract., 1971, vol. 8, no 2, pp. 161-180.
- Fabrichnaya O., Seifert H. J. Thermodynamic assessment of the ZrO₂-Yb₂O₃-Al₂O₃ system. Calphad, 2010, vol. 34, pp. 206–214. http://dx.doi.org/10.1016/j.calphad.2010.03.001
- Angeles-Chavez C., Salas P., Díaz-Torres L. A., Rosa E. de la, Esparza R., Perez R. Structural and Chemical Characterization of Yb₂O₃-ZrO₂ System by HAADF-STEM and HRTEMC. Microsc. Microanal, 2009, vol. 15, pp. 46–53. http://dx.doi.org/10.1017/S1431927609090047
- Corman G. S. and Stubican V. S. *Phase Equilibria and Ionic Conductivity in the System ZrO₂-Yb₂O₃-Y₂O₃. J.e Am. Ceramic Soc., 1985, vol. 68, no 4, pp. 174–181. http://dx.doi.org/10.1111/j.1151-2916.1985.tb15293.x*

- 7. Lopato L. M., Red'ko V. P., Gerasimuk G. I. *Synthesis of some tsirkanatov (gafnata) REE* Powder Metallurgy and Metal Ceramics, 1990, no 4, pp. 73-75. (*in Russian*).
- 8. Lakiza S. M., Red ko V. P., Lopato L. M. *The Al*₂O₃–ZrO₂–Yb₂O₃ phase diagram. I. Isothermal sections at 1250 and 1650°C. Powder Metallurgy and Metal Ceramics, 2008, vol. 47, no 3-4, pp. 60–69. http://dx.doi.org/10.1007/s11106-008-9006-6
- Lakiza S. M., Zaitseva Z. O., Lopato L. M. Physicochemical materials research Al₂O₃–ZrO₂–Yb₂O₃ Phase diagram.
 II. Liquidus surface. Powder Metallurgy and Metal Ceramics, 2008, vol. 47, no 5-6, pp. 338-343. http://dx.doi.org/10.1007/s11106-008-9025-3
- 10. Lakiza S. M., Red'ko V. P., L. M. Lopato Al_2O_3 – ZrO_2 - Yb_2O_3 phase diagram. III. Solidus surface. Powder Metallurgy and Metal Ceramics, 2008, vol. 47, no 7-8, pp. 420-427. https://doi.org/10.1007/s11106-008-9036-0
- 11. Lakiza S. M., Red'ko V. P., Lopato L. M. *Physicochemical materials research* Al_2O_3 – ZrO_2 – Yb_2O_3 *Phase diagram. IV. Vertecal sections.* Powder Metallurgy and Metal Ceramics, 2008, vol. 47, no 9-10, pp. 577 585. http://dx.doi.org/10.1007/s11106-008-9061-z
- 12. Chong W. Experimental and Computational Phase Studies of the ZrO₂-based Systems for Thermal Barrier Coatings. Dissertation an der Universität Stuttgart Max-Planck-Institut für Metallforschung. 2006, 183 p.
- 13. Gonzalez M., Moure C., Jurado J. R. and Duran P. *Solid-state reaction, microstructure and phase relations in the ZrO₂-rich region of the ZrO₂-Yb₂O₃ system J. Mater. Sci., 1993, vol. 28, pp. 3451–3456. http://dx.doi.org/10.1007/BF01159821*
- 14. Andrievskaya E.R. *Phase equilibria in the systems of hafnia, zirconia, yttria with rare-earth oxides.* Kiev, Naukova dumka, 2010. 470 p. (*in Russian*)
- 15. Kornienko O.A., Korychev S.F., Bogatyryova J.D., Andrievskaya E.R. *Phase equilibria in the ZrO₂–Dy₂O₃ system at 1100 °C*. Visn. Odes. nac. univ., Him., 2016 vol. 21, no 3(59), pp. 77-87. http://dx.doi.org/10.18524/2304-0947.2016.3(59).79592 (*in Russian*).